Skip to main content
Log in

Pattern formation for reactive species undergoing anisotropic diffusion

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Turing instabilities for a two species reaction-diffusion system is studied under anisotropic diffusion. More specifically, the diffusion constants which characterize the ability of the species to relocate in space are direction sensitive. Under this working hypothesis, the conditions for the onset of the instability are mathematically derived and numerically validated. Patterns which closely resemble those obtained in the classical context of isotropic diffusion, develop when the usual Turing condition is violated, along one of the two accessible directions of migration. Remarkably, the instability can also set in when the activator diffuses faster than the inhibitor, along the direction for which the usual Turing conditions are not matched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer-Verlag, 2003)

  2. A. Ord, B.E. Hobbs, Phil. Trans. R. Soc. A 368, 95 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  3. B.P. Belousov, Collection of Abstracts on Radiation Medicine 145, 147 (1957)

    Google Scholar 

  4. S. Strogatz, Non linear dynamics and chaos: with applications to Physics, Biology, Chemistry and Engineering (Perseus Book Group, 2001)

  5. L. Yang, M. Dolnik, A.M. Zhabotinsky, E.R. Epstein, J. Chem. Phys. 117, 7259 (2002)

    Article  ADS  Google Scholar 

  6. R. deForest, A. Belmonte, Phys. Rev. E. 87, 062138 (2013)

    Article  ADS  Google Scholar 

  7. M.A. Novak, R.M. May, Nature 359, 827 (1992)

    ADS  Google Scholar 

  8. M.A. Novak, S. Bonhoeffer, R.M. May, Int. J. Bifurc. Chaos 4, 33 (1993)

    Google Scholar 

  9. J.Y. Wakano, Ch. Hauert, J. Theor. Biol. 268, 30 (2011)

    Article  MathSciNet  Google Scholar 

  10. A.M. Turing, Phil. Trans. R. Soc. London Ser. B 237, 37 (1952)

    Article  ADS  Google Scholar 

  11. R.A. Satnoianu, M. Menzinger, P.K. Maini, Math. Biol. 41, 493 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Ermentrout, M. Lewis, Bull. Math. Biol. 59, 533 (1997)

    Article  MATH  Google Scholar 

  13. M. Asslani, F. Di Patti, D. Fanelli, Phys. Rev. E 86, 046105 (2012)

    Article  ADS  Google Scholar 

  14. M. Asllani, T. Biancalani, D. Fanelli, A.J. McKane, Eur. Phys. J. B 86, 476 (2013)

    Article  ADS  Google Scholar 

  15. T. Biancalani, F. Di Patti, D. Fanelli, Phys. Rev. E 81, 046215 (2010)

    Article  ADS  Google Scholar 

  16. L. Cantini, C. Cianci, D. Fanelli, E. Massi, L. Barletti, M. Asllani, J. Math. Biol. 69, 1585 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Varea, J.L. Aragón, R.A. Barrio, Phys. Rev. E 60, 4588 (1999)

    Article  ADS  Google Scholar 

  18. D. del-Castillo-Negrete, B.A. Carreras, V. Lynch, Physica D 168-169, 45 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  19. G. Mulone, S. Rionero, W. Wang, Nonlin. Anal. 74, 4831 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. A.E. Tikhomirova, V.A. Volpert, Appl. Math. Lett. 20, 163 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. M.A. Tsyganov, J. Brindley, A.V. Holden, V.N. Biktashev, Phys. Rev. Lett. 91, 218102 (2003)

    Article  ADS  Google Scholar 

  22. V.K. Vanag, I.R. Epstein, Phys. Chem. Chem. Phys. 11, 897 (2009)

    Article  Google Scholar 

  23. T.C. Lacalli, D.A. Wilkinson, L.G. Harrison, Development 103, 105 (1988)

    Google Scholar 

  24. H. Shoji, Y. Iwasa, A. Mochizuki, S. Kondo, J. Theor. Biol. 214, 549 (2002)

    Article  MathSciNet  Google Scholar 

  25. D. Fanelli, A. McKane, Phys. Rev. E 82, 021113 (2010)

    Article  ADS  Google Scholar 

  26. D. Fanelli, C. Cianci, F. Di Patti, Eur. Phys. J. B 86, 142 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Gambino, M.C. Lombardo, M. Sammartino, Math. Comput. Simul. 82, 1112 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Kovács, Nonlin. Anal. 59, 567 (2004)

    Article  MATH  Google Scholar 

  29. N. Kumar, W. Horsthemke, Phys. Rev. E 83, 036105 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Ruiz-Baier, C. Tian, Nonlin. Anal. 14, 601 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. E.P. Zemskov, V.K. Vanag, I.R. Epstein, Phys. Rev. E 84, 036216 (2011)

    Article  ADS  Google Scholar 

  32. E.P. Zemskov, K. Kassner, M.J.B. Hauser, W. Horsthemke, Phys. Rev. E 87, 032906 (2013)

    Article  ADS  Google Scholar 

  33. S.P. Dawson, A. Lawniczak, R. Kapral, J. Chem. Phys. 100, 5211 (1994)

    Article  ADS  Google Scholar 

  34. A.B. Rovinsky, M. Menzinger, Phys. Rev. Lett. 69, 1193 (1992)

    Article  ADS  Google Scholar 

  35. D.A. Vasquez, J.W. Wilder, B.F. Edwards, Phys. Rev. Lett. 71, 1538 (1993)

    Article  ADS  Google Scholar 

  36. F. Mertens et al., Phys. Rev. E 51, R5193 (1995)

    Article  ADS  Google Scholar 

  37. M. Mimura, J.D. Murray, J. Theor. Biol. 75, 249 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timoteo Carletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busiello, D., Planchon, G., Asllani, M. et al. Pattern formation for reactive species undergoing anisotropic diffusion. Eur. Phys. J. B 88, 222 (2015). https://doi.org/10.1140/epjb/e2015-60269-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60269-0

Keywords

Navigation