Skip to main content
Log in

Jamming mechanism on the scale-free network with heterogeneous node capacity

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

To understand how the jamming on real communication networks depends on node capacity, we study the traffic model with heterogeneous node capacity. In this model, each movable packet takes a biased random walk and the capacity of a node with degree k is given as C(k) ∼ k x with a tunable parameter x. Each packet disappears when it arrives at the preassigned target node. We analytically and numerically show that the transition from the free-flow phase to the jammed phase occurs when the balance between the packet generations and removals is broken. The balance breaking condition for the jamming is analytically determined by the competition between C(k) and the average number of packets on a node of degree k, m f (k), in the free-flow phase. Based on the analytic arguments, we find that there exist three different jamming patterns depending on C(k). The analytic conjectures for jamming patterns are verified by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.-H. Yook, H. Jeong, A.-L. Barabási, Proc. Natl. Acad. Sci. 99, 13382 (2002)

    Article  ADS  Google Scholar 

  2. R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 103 (1999)

    Google Scholar 

  3. J.M. Kleinberg, Nature 406, 845 (2000)

    Article  ADS  Google Scholar 

  4. Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, in ICS’02: Proc. of the 16th ACM Intl. Conf. Supercomputing (2002), Vol. 84

  5. S. Nandi, L. Brusch, A. Deutsch, N. Ganguly, Phys. Rev. E 81, 061124 (2010)

    Article  ADS  Google Scholar 

  6. S. Lee, S.-H. Yook, Y. Kim, Physica A 385, 743 (2007)

    Article  ADS  Google Scholar 

  7. S. Lee, S.-H. Yook, Y. Kim, Phys. Rev. E 80, 017102 (2009)

    Article  ADS  Google Scholar 

  8. L.A. Adamic, R.M. Lukose, A.R. Puniyani, B.A. Huberman, Phys. Rev. E 64, 046135 (2001)

    Article  ADS  Google Scholar 

  9. K. Kim, B. Kahng, D. Kim, Europhys. Lett. 86, 58002 (2009)

    Article  ADS  Google Scholar 

  10. H. Kawamoto, A. Igarashi, Physica A 391, 895 (2012)

    Article  ADS  Google Scholar 

  11. C.H. Kai, J. Long, X. Ling, M.-B. Hu, Physica A 401, 174 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  12. W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, T. Zhou, Phys. Rev. E 73, 026111 (2006)

    Article  ADS  Google Scholar 

  13. C.-Y. Yin, B.-H. Wang, W.-X. Wang, T. Zhou, H.-J. Yang, Phys. Lett. A 351, 220 (2006)

    Article  ADS  MATH  Google Scholar 

  14. B. Tadić, S. Thurner, G.J. Rodgers, Phys. Rev. E 69, 036102 (2004)

    Article  ADS  Google Scholar 

  15. L. Zhao, Y.-C. Lai., K. Park, N. Ye, Phys. Rev. E 71, 026125 (2005)

    Article  ADS  Google Scholar 

  16. S. Yoon, S. Lee, S.-H. Yook, Y. Kim, Phys. Rev. E 75, 046114 (2007)

    Article  ADS  Google Scholar 

  17. Z. Eisler, J. Kertész, Phys. Rev. E 71, 057104 (2005)

    Article  ADS  Google Scholar 

  18. S. Hwang, D.-S. Lee, B. Kahng, Phys. Rev. Lett. 109, 088701 (2012)

    Article  ADS  Google Scholar 

  19. S. Hwang, D.-S. Lee, B. Kahng, Phys. Rev. E 85, 046110 (2012)

    Article  ADS  Google Scholar 

  20. J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 78, 065102(R) (2008)

    Article  ADS  Google Scholar 

  21. Z. Burda, J. Duda, J.M. Luck, B. Waclaw, Phys. Rev. Lett. 102, 160602 (2009)

    Article  ADS  Google Scholar 

  22. R. Sinatra, J. Gómez-Gardeñes, R. Lambiotte, V. Nicosia, V. Latora, Phys. Rev. E 83, 030103(R) (2011)

    Article  ADS  Google Scholar 

  23. J.D. Noh, G.M. Shim, H. Lee, Phys. Rev. Lett. 94, 198701 (2005)

    Article  ADS  Google Scholar 

  24. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. 101, 3747 (2004)

    Article  ADS  Google Scholar 

  25. S. Kwon, S. Yoon, Y. Kim, Phys. Rev. E 77, 066105 (2008)

    Article  ADS  Google Scholar 

  26. S. Kwon, W. Choi, Y. Kim, Phys. Rev. E 82, 021108 (2010)

    Article  ADS  Google Scholar 

  27. A. Arenas, A. Díaz-Guilera, R. Guimerá, Phys. Rev. Lett. 86, 3196 (2001)

    Article  ADS  Google Scholar 

  28. D. De Martino, L. Dall’Asta, G. Bianconi, M. Marsili, Phys. Rev. E 79, 015101(R) (2009)

    Article  ADS  Google Scholar 

  29. S.N. Dorogovtesv, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  30. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yup Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Park, H., Choi, W. et al. Jamming mechanism on the scale-free network with heterogeneous node capacity. Eur. Phys. J. B 88, 192 (2015). https://doi.org/10.1140/epjb/e2015-60053-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60053-2

Keywords

Navigation