Skip to main content
Log in

Thermal transport in free-standing silicon membranes: influence of dimensional reduction and surface nanostructures

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Nanostructuring provides a viable route to improve the thermoelectric performance of materials, even of those that in bulk form have very low figure of merit. This strategy would potentially enable the fabrication of thermoelectric devices based on silicon, the cheapest, most integrable and easiest to dope Earth-abundant semiconductor. A drastic reduction of the thermal conductivity, which would lead to a proportional enhancement of the figure of merit, was observed for silicon low-dimensional nanostructures, such as nanowires and ultra-thin membranes. Here we provide a detailed analysis of the phononic properties of the latter, and we show that dimensionality reduction alone is not sufficient to hinder heat transport to a great extent. In turn, the presence of surface roughness at the nanoscale reduces the thermal conductivity of sub-10 nm membranes up to 10 times with respect to bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Majumdar, Science 303, 777 (2004)

    Article  Google Scholar 

  2. A. Majumdar, Nat. Nanotechnol. 4, 214 (2009)

    Article  ADS  Google Scholar 

  3. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  4. A. Balandin, Phys. Low-Dim. Struct. 1, 2, 1 (2000)

    Google Scholar 

  5. J.H. Lee, G.A. Galli, J.C. Grossman, Nano Lett. 8, 3750 (2008)

    Article  ADS  Google Scholar 

  6. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  7. M.S. Dresselhaus et al., Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  8. A.I. Boukai et al., Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  9. J.K. Yu et al., Nat. Nanotechnol. 5, 718 (2010)

    Article  ADS  Google Scholar 

  10. J. Tang et al., Nano Lett. 10, 4279 (2010)

    Article  ADS  Google Scholar 

  11. A. Balandin, K.L. Wang, Phys. Rev. B 58, 1544 (1998)

    Article  ADS  Google Scholar 

  12. G. Chen, Int. J. Therm. Sci. 39, 471 (2000)

    Article  Google Scholar 

  13. G. Chen, J. Nanopart. Res. 2, 199 (2000)

    Article  Google Scholar 

  14. G. Chen, A. Narayanaswamy, C. Dames, Superlattice Microstrut. 35, 161 (2004)

    Article  ADS  Google Scholar 

  15. A.A. Balandin, J. Nanosci. Nanotechnol. 5, 1015 (2005)

    Article  Google Scholar 

  16. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  17. J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, NPG Asia Mater. 2, 152 (2010)

    Article  Google Scholar 

  18. J. Cuffe et al., Nano Lett. 12, 3569 (2012)

    Article  ADS  Google Scholar 

  19. M. Asheghi, Y.K. Leung, S.S. Wong, K.E. Goodson, Appl. Phys. Lett. 71, 1798 (1997)

    Article  ADS  Google Scholar 

  20. Y.S. Ju, K.E. Goodson, Appl. Phys. Lett. 74, 3005 (1999)

    Article  ADS  Google Scholar 

  21. W. Liu, M. Asheghi, J. Appl. Phys. 98, 123523 (2005)

    Article  ADS  Google Scholar 

  22. X. Liu, X. Wu, T. Ren, Appl. Phys. Lett. 98, 174104 (2011)

    Article  ADS  Google Scholar 

  23. E. Chávez-Ángel et al., APL Mater. 2, 012113 (2014)

    Article  ADS  Google Scholar 

  24. J.A. Johnson, A.A. Maznev, J. Cuffe, J.K. Eliason, A.J. Minnich, T. Kehoe, C.M. Sotomayor Torres, G. Chen, K.A. Nelson, Phys. Rev. Lett. 110, 025901 (2013)

    Article  ADS  Google Scholar 

  25. J.E. Turney, A.J.H. McGaughey, C.H. Amon, J. Appl. Phys. 107, 024317 (2010)

    Article  ADS  Google Scholar 

  26. C.J. Gomes, M. Madrid, J.V. Goicochea, C.H. Amon, J. Heat Transfer 128, 1114 (2006)

    Article  Google Scholar 

  27. P. Heino, Eur. Phys. J. B 60, 171 (2007)

    Article  ADS  Google Scholar 

  28. Y.S. Ju, K. Kurabayashi, K.E. Goodson, Thin Solid Films 339, 160 (1999)

    Article  ADS  Google Scholar 

  29. W. Liu, M. Asheghi, Appl. Phys. Lett. 84, 3819 (2004)

    Article  ADS  Google Scholar 

  30. C.N. Liao, C. Chen, K.N. Tu, J. Appl. Phys. 86, 3204 (1999)

    Article  ADS  Google Scholar 

  31. H. Ikeda, F. Salleh, Appl. Phys. Lett. 96, 012106 (2010)

    Article  ADS  Google Scholar 

  32. J.H. Lee, J.C. Grossman, J. Reed, G. Galli, Appl. Phys. Lett. 91, 223110 (2007)

    Article  ADS  Google Scholar 

  33. Y. He et al., ACS Nano 5, 1839 (2011)

    Article  Google Scholar 

  34. D. Li et al., Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  35. R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)

    Article  ADS  Google Scholar 

  36. K. Hippalgaonkar et al., Nano Lett. 10, 4341 (2010)

    Article  ADS  Google Scholar 

  37. A. Shchepetov et al., Appl. Phys. Lett. 102, 192108 (2013)

    Article  ADS  Google Scholar 

  38. C.J. Glassbrenner, G.A. Slack, Phys. Rev. 134, A1058 (1964)

    Article  ADS  Google Scholar 

  39. M.G. Holland, Phys. Rev. 132, 2461 (1963)

    Article  ADS  Google Scholar 

  40. E.H. Sondheimer, Adv. Phys. 1, 1 (1952)

    Article  ADS  Google Scholar 

  41. D.A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007)

    Article  ADS  Google Scholar 

  42. J.A. Appelbaum, G.A. Baraff, D.R. Hamann, Phys. Rev. B 14, 588 (1976)

    Article  ADS  Google Scholar 

  43. D.J. Chadi, Phys. Rev. Lett. 43, 43 (1979)

    Article  ADS  Google Scholar 

  44. J.E. Northrup, Phys. Rev. Lett. 54, 815 (1985)

    Article  ADS  Google Scholar 

  45. P.C. Weakliem, E.A. Carter, J. Chem. Phys. 96, 3240 (1992)

    Article  ADS  Google Scholar 

  46. D. Donadio, G. Galli, Phys. Rev. Lett. 102, 195901 (2009)

    Article  ADS  Google Scholar 

  47. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  48. M.Z. Bazant, E. Kaxiras, Phys. Rev. Lett. 77, 4370 (1996)

    Article  ADS  Google Scholar 

  49. J. Tersoff, Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  50. P.C. Kelires, J. Tersoff, Phys. Rev. Lett. 63, 1164 (1989)

    Article  ADS  Google Scholar 

  51. K.L. Whiteaker, I.K. Robinson, J.E. Van Nostrand, D.G. Cahill, Phys. Rev. B 57, 12410 (1998)

    Article  ADS  Google Scholar 

  52. G. Pernot et al., Nat. Mater. 9, 491 (2010)

    Article  ADS  Google Scholar 

  53. L.P. Solie, B.A. Auld, J. Acoust. Soc. Am. 54, 50 (1973)

    Article  ADS  Google Scholar 

  54. J.M. Ziman, Electrons and Phonons: the Theory of Transport Phenomena in Solids (Clarendon Press, Oxford, 2001)

  55. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  56. R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965)

    Article  ADS  Google Scholar 

  57. F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997)

    Article  ADS  Google Scholar 

  58. P. Schelling, S. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306 (2002)

    Article  ADS  Google Scholar 

  59. E. Lampin, Q.H. Nguyen, P. Francioso, F. Cleri, Appl. Phys. Lett. 100, 131906 (2012)

    Article  ADS  Google Scholar 

  60. C. Melis, R. Dettori, S. Vandermeulen, L. Colombo, Eur. Phys. J. B 87, 96 (2014)

    Article  ADS  Google Scholar 

  61. D.P. Sellan et al., Phys. Rev. B 81, 214305 (2010)

    Article  ADS  Google Scholar 

  62. Y. He, I. Savic, D. Donadio, G. Galli, Phys. Chem. Chem. Phys. 14, 16209 (2012)

    Article  Google Scholar 

  63. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  64. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  65. R. Kremer et al., Solid State Commun. 131, 499 (2004)

    Article  ADS  Google Scholar 

  66. M. Asheghi et al., J. Heat Transfer 120, 30 (1998)

    Article  Google Scholar 

  67. W. Liu, M. Asheghi, J. Appl. Phys. 98, 123523 (2005)

    Article  ADS  Google Scholar 

  68. B.L. Davis, M.I. Hussein, Phys. Rev. Lett. 112, 055505 (2014)

    Article  ADS  Google Scholar 

  69. D. Donadio, G. Galli, Nano Lett. 10, 847 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Donadio.

Additional information

Contribution to the Topical Issue “Silicon and Silicon-related Materials for Thermoelectricity”, edited by Dario Narducci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neogi, S., Donadio, D. Thermal transport in free-standing silicon membranes: influence of dimensional reduction and surface nanostructures. Eur. Phys. J. B 88, 73 (2015). https://doi.org/10.1140/epjb/e2015-50677-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50677-5

Keywords

Navigation