Skip to main content
Log in

Coercivity reduction in a two-dimensional array of nano-particles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in the nodes of triangular, hexagonal and square grids. Based on the numerical solution of the non-stochastic Landau-Lifshitz-Gilbert equation we show that each particle distribution type is characterized with a proper optimal distance, allowing to lower the coercivity values for approximately 30% compared with the reference value obtained for a single nano-particle. It was shown that the reduction of coercivity occurs even if the particle position in the array is not very precise. In particular, the triangular particle arrangement maintained the same optimal distance between the particles under up to 20% random displacements of their position within the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett. 57, 2442 (1986)

    Article  ADS  Google Scholar 

  2. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, E. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  3. I. Kaitsu, R. Inamura, J. Toda, T. Morita, Fujitsu Sci. Tech. J. 42, 122 (2006)

    Google Scholar 

  4. R.C. Sousa, I.L. Prejbeanu, C.R. Physique 6, 1013 (2005)

    Article  ADS  Google Scholar 

  5. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Nature 425, 380 (2003)

    Article  ADS  Google Scholar 

  6. S. Kaka, M.R. Pufall, W.R. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Nature 437, 389 (2005)

    Article  ADS  Google Scholar 

  7. I. Žutic, J. Fabian, S. Das, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  8. M.D. Stiles, J. Miltat, Top. Appl. Phys. 101, 1 (2006)

    Article  Google Scholar 

  9. T.J. Silva, W.H. Rippard, J. Magn. Magn. Mater. 320, 1260 (2008)

    Article  ADS  Google Scholar 

  10. L. Fricke, S. Serrano-Guisan, H.W. Schumacher, Physica B 407, 1153 (2012)

    Article  ADS  Google Scholar 

  11. Ya.B. Bazaliy, B.A. Jones, S.C. Zhang, Phys. Rev. B 69, 094421 (2004)

    Article  ADS  Google Scholar 

  12. J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B 72, 14446 (2005)

    Article  ADS  Google Scholar 

  13. W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, V. Tsiantos, Comput. Mater. Sci. 28, 366 (2003)

    Article  Google Scholar 

  14. A. Hubert, R. Schaefer, Magnetic Domains (Springer, Berlin, Heidelberg, 1998)

  15. M.A. Perry, T.J. Flack, D.K. Koltsov, M.E. Welland, J. Magn. Magn. Mater. 314, 75 (2007)

    Article  ADS  Google Scholar 

  16. C.C. Dantas, Physica E 44, 675 (2011)

    Article  ADS  Google Scholar 

  17. K.F. Braun, S. Sievers, M. Albrecht, U. Siegner, K. Landfester, V. Holzapfel, J. Magn. Magn. Mater. 321, 3719 (2009)

    Article  ADS  Google Scholar 

  18. A. Berger, Physica B 407, 1322 (2012)

    Article  ADS  Google Scholar 

  19. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press, London, 2004)

  20. J.A. Osborn, Phys. Rev. 67, 351 (1945)

    Article  ADS  Google Scholar 

  21. W.F. Brown, Magnetostatic Principles in Ferromagnetism (North-Holland, Amsterdam, 1962)

  22. J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010)

  23. M. Beleggia, M. De Graef, J. Magn. Magn. Mater. 263, L1 (2003)

    Article  ADS  Google Scholar 

  24. M. Beleggia, M. De Graef, J. Magn. Magn. Mater. 285, L1 (2005)

    Article  ADS  Google Scholar 

  25. M. Beleggia, M. De Graef, Y.T. Millev, D.A. Goode, G. Rowlands, J. Phys. D 38, 3333 (2005)

    Article  ADS  Google Scholar 

  26. M. Beleggia, M. De Graef, Y.T. Millev, J. Phys. D 39, 891 (2006)

    Article  ADS  Google Scholar 

  27. J.-K. Ha, R. Hertel, J. Kirschner, Phys. Rev. B 67, 224432 (2003)

    Article  ADS  Google Scholar 

  28. S. Cherifi, R. Hertel, J. Kirschner, H. Wang, R. Belkhou, A. Locatelli, S. Heun, A. Pavlovska, E. Bauer, J. Appl. Phys. 98, 043901 (2005)

    Article  ADS  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  30. T.L. Gilbert, Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  31. T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)

    Article  ADS  Google Scholar 

  32. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

  33. M. Morales-Meza, P.F. Zubieta-Rico, P.P. Horley, A. Sukhov, V.R. Vieira, Physica B (2014), DOI:10.1016/j.physb.2014.04.017

  34. E.Yu. Vedmedenko, A. Ghazi, J.-C. S. Lévy, Phys. Rev. B 59, 3329 (1999)

    Article  ADS  Google Scholar 

  35. V. Novosad, M. Grimsditch, K.Yu. Guslienko, P. Vavassori, Y. Otani, S.D. Bader, Phys. Rev. B 66, 052407 (2002)

    Article  ADS  Google Scholar 

  36. B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, Phys. Rev. B 76, 224426 (2007)

    Article  ADS  Google Scholar 

  37. K.Yu. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008)

    Google Scholar 

  38. U. Nowak, in Annual Reviews of Computational Physics IX, edited by D. Stauffer (World Scientific, Singapore, 2001), p. 105

  39. S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista, M. Bode, E.Y. Vedmedenko, R. Wiesendager, Phys. Rev. Lett. 103, 127202 (2009)

    Article  ADS  Google Scholar 

  40. For a recent review, see W.T. Coffey, Y.P. Kalmykov, J. Appl. Phys. 112, 121301 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sukhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Meza, M., Horley, P., Sukhov, A. et al. Coercivity reduction in a two-dimensional array of nano-particles. Eur. Phys. J. B 87, 186 (2014). https://doi.org/10.1140/epjb/e2014-50311-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50311-2

Keywords

Navigation