Skip to main content
Log in

Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

On the basis of ab-initio calculations, we predict the effect of conformation and molecule-electrode distance on transport properties of asymmetric molecular junctions for different electrode materials M (M = Au, Ag, Cu, and Pt). The asymmetry in these junctions is created by connecting one end of the biphenyl molecule to conjugated double thiol (model A) and single thiol (model B) groups, while the other end to Cu atom. A variety of phenomena viz. rectification, negative differential resistance (NDR), switching has been observed that can be controlled by tailoring the interface state properties through molecular conformation and molecule-electrode distance for various M. These properties are further analyzed by calculating transmission spectra, molecular orbitals, and orbital energy. It is found that Cu electrode shows significantly enhanced rectifying performance with change in torsion angles, as well as with increase in molecule-electrode distances than Au and Ag electrodes. Moreover, Pt electrode manifests distinctive multifunctional behavior combining switch, diode, and NDR. Thus, the Pt electrode is suggested to be a good potential candidate for a novel multifunctional electronic device. Our findings are compared with available experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.D. Goldhaber, M.S. Montemerlo, J.C. Love, G.J. Opiteck, J.C. Ellenbogen, in Proceedings IEEE, Overview of Nanoelectronic Devices, 1997, Vol. 85, p. 521

  2. Introducing Molecular Electronics, edited by G. Cuniberti, G. Fagas, K. Richter (Springer, Berlin, 2005)

  3. J.M. Tour, Acc. Chem. Res. 33, 791 (2000)

    Article  Google Scholar 

  4. K. Galatsis, K. Wang, Y.Y. Botros, Y. Yang, Y.H. Xie, J.F. Stoddart, R.B. Kaner, C. Ozkan, J. Liu, M. Ozkan, C. Zhou, K.W. Kim, IEEE Circuits Devices Mag. 22, 12 (2006)

    Article  Google Scholar 

  5. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  6. R.M. Metzger, B. Chen, U. Hopfner, M.V. Lakshmikantham, D. Vuillaume, T. Kawai, X.L. Wu, H. Tachibana, T.V. Hughes, H. Sakurai, J.W. Baldwin, C. Hosch, M.P. Cava, L. Brehmer, G.J. Ashwell, J. Am. Chem. Soc. 119, 10455 (1997)

    Article  Google Scholar 

  7. A.S. Martin, J.R. Sambles, G.J. Ashwell, Phys. Rev. Lett. 70, 218 (1993)

    Article  ADS  Google Scholar 

  8. M. Pomerantz, A. Aviram, R.A. McCorkle, L. Li, A.G. Schrott, Science 255, 1115 (1992)

    Article  ADS  Google Scholar 

  9. N.J. Geddes, J.R. Sambles, D.J. Jarvis, W.G. Parker, D.J. Sandman, Appl. Phys. Lett. 56, 1916 (1990)

    Article  ADS  Google Scholar 

  10. T. Xu, I.R. Peterson, M.V. Lakshmikantham, R.M. Metzger, Angew. Chem. Int. Ed. 40, 1749 (2001)

    Article  Google Scholar 

  11. C. Roman, S. Roche, A. Rubio, in Carbon Nanotube Devices: Properties, Modeling, Integration and Applications, edited by C. Hierold (Wiley-VCH, Weinheim, 2008)

  12. P. Zhao, D.S. Liu, Physica E 47, 224 (2013)

    Article  ADS  Google Scholar 

  13. S.Y. Quek, H.J. Choi, S.G. Louie, J. B. Neaton, Nano Lett. 9, 3949 (2009)

    Article  Google Scholar 

  14. Y.D. Guo, X.H. Yan, Y. Xiao, RSC Adv. 3, 16672 (2013)

    Article  Google Scholar 

  15. P. Tang, P. Chen, J. Wu, F. Kang, J. Li, A. Rubio, W. Duan, Nanoscale 5, 7537 (2013)

    Article  ADS  Google Scholar 

  16. F. Chen, N.J. Tao, Acc. Chem. Res. 42, 429 (2009)

    Article  Google Scholar 

  17. T.N. Lan, Chem. Phys. 428, 53 (2014)

    Article  ADS  Google Scholar 

  18. L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nature, 442, 904 (2006)

    Article  ADS  Google Scholar 

  19. M. Burkle, J.K. Viljas, A. Mishchenko, D. Vonlanthen, G. Schon, M. Mayor, T. Wandlowski, F. Pauly, Phys. Rev. B 85, 075417 (2012)

    Article  ADS  Google Scholar 

  20. A. Mishchenko, D. Vonlanthen, V. Meded, M. Burkle, C. Li, I.V. Pobelov, A. Bagrets, J.K. Viljas, F. Pauly, F. Evers, M. Mayor, T. Wandlowski, Nano Lett. 10, 156 (2010)

    Article  ADS  Google Scholar 

  21. Y. Xia, G.M. Whitesides, Adv. Mater. 7, 471 (1995)

    Article  Google Scholar 

  22. A. Ulman, Chem. Rev. 96, 1533 (1996)

    Article  Google Scholar 

  23. F.X. Meng, C. Ming, J. Zhuang, X.J. Ning, J. Phys. D 46, 055309 (2013)

    Article  ADS  Google Scholar 

  24. H. Kondo, J. Nara, H. Kino, T. Ohno, J. Phys.: Condens. Matter 21, 064220 (2009)

    ADS  Google Scholar 

  25. S. Parashar, P. Srivastava, M. Pattanaik, J. Comput. Electron. 12, 775 (2013)

    Article  Google Scholar 

  26. S. Parashar, P. Srivastava, M. Pattanaik, Solid State Commun. 191, 54 (2014)

    Article  ADS  Google Scholar 

  27. H. Kondo, J. Nara, H. Kino, T. Ohno, J. Chem. Phys. 128, 064701 (2008)

    Article  ADS  Google Scholar 

  28. L.H. Wang, Y. Guo, C.F. Tian, X.P. Song, B.J. Ding, Phys. Lett. A 374, 4876 (2010)

    Article  ADS  Google Scholar 

  29. G.M. Wang, W.C. Sandberg, S.D. Kenny, Nanotechnology 17, 4819 (2006)

    Article  ADS  Google Scholar 

  30. S.C. Wang, W.C. Lu, Q.Z. Zhao, J. Bernholc, Phys. Rev. B 74, 195430 (2006)

    Article  ADS  Google Scholar 

  31. J.M. Ji, Y.X. Zhai, C.F. Fang, Y. Q. Xu, B. Cui, D.S. Liu, Phys. Lett. A 375, 1602 (2011)

    Article  ADS  Google Scholar 

  32. AtomistixToolKit version 2011.2.8, QuantumWise A/S, http://quantumwise.com

  33. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  34. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  35. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  36. S. Datta, Electronic transport in Mesoscopic systems (Cambridge University Press, Cambridge, 1995)

  37. J. Taylor, M. Brandbyge, K. Stokbro, Phys. Rev. Lett. 89, 138301 (2002)

    Article  ADS  Google Scholar 

  38. W.Y. Kim, K.S. Kim, Nat. Nanotechnol. 3, 408 (2008)

    Article  Google Scholar 

  39. Z.Y. Li, D.S. Kosov, J. Phys. Chem. B 110, 19116 (2006)

    Article  Google Scholar 

  40. Z.Y. Li, D.S. Kosov, J. Phys. Chem. B 110, 9893 (2006)

    Article  Google Scholar 

  41. H. Dalgleish, G. Kirczenow, Nano Lett. 6, 1274 (2006)

    Article  ADS  Google Scholar 

  42. S. Yuan, S. Wang, Q. Mei, Q. Ling, L. Wang, W. Huang, J. Phys. Chem. A 115, 9033 (2011)

    Article  Google Scholar 

  43. A. Staykov, D. Nozaki, K. Yoshizawa, J. Phys. Chem. C 111, 11699 (2007)

    Article  Google Scholar 

  44. T. Rangel, A. Ferretti, P.E. Trevisanutto, V. Olevano, G.M. Rignanese, Phys. Rev. B 84, 045426 (2011)

    Article  ADS  Google Scholar 

  45. S. Martin, D.Z. Manrique, V.M. Garcia-Suarez, W. Haiss, S.J. Higgins, C.J. Lambert, R.J. Nichols, Nanotechnology 20, 125203 (2009)

    Article  ADS  Google Scholar 

  46. M.H. Tsai, T.H. Lu, Nanotechnology 21, 065203 (2010)

    Article  ADS  Google Scholar 

  47. Y.H. Tang, V.M.K. Bagci, J.H. Chen, C.C. Kaun, J. Phys. Chem. C 115, 25105 (2011)

    Article  Google Scholar 

  48. K.S. Thygesen, A. Rubio, Phys. Rev. B 77, 115333 (2008)

    Article  ADS  Google Scholar 

  49. Z.H. Zhang, Z. Yang, J.H. Yuan, H. Zhang, X.Q. Ding, M. Qiu, J. Chem. Phys. 129, 094702 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Srivastava.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashar, S., Srivastava, P., Pattanaik, M. et al. Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance. Eur. Phys. J. B 87, 220 (2014). https://doi.org/10.1140/epjb/e2014-50133-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50133-2

Keywords

Navigation