Skip to main content
Log in

Calculating thermal conductivity in a transient conduction regime: theory and implementation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a molecular dynamics method addressed to the calculation of the lattice thermal conductivity during the transient regime of approach to equilibrium from an initial condition of nonuniform temperature profile. We thoroughly assess the basics, the robustness, and the accuracy of the method, in particular by showing that its results are basically independent of most of the arbitrary simulation parameters. In addition, the method here presented is computationally light, thus paving the way for the investigation of large systems. This feature is fully exploited to investigate the thermal transport properties of disordered and nanostructured silicon samples, providing a clear atomistic picture on the ability of grain boundaries and lattice disorder to affect thermal conductivity by improved scattering of vibrational modes with long mean free path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer (John Wileys & Sons, USA, 2002)

  2. J.H. Lienhard IV, J.H. Lienhard V, A heat transfer textbook (Phlogiston Press, Cambridge, 2006)

  3. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  4. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009)

    Article  Google Scholar 

  5. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  6. G.S. Nolas, J. Sharp, H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001)

  7. K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, J.A. Malen, Nat. Commun. 4, 1640 (2013)

    Article  ADS  Google Scholar 

  8. P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306 (2002)

    Article  ADS  Google Scholar 

  9. Y. He, I. Savić, D. Donadio, G. Galli, Phys. Chem. Chem. Phys. 14, 16209 (2012)

    Article  Google Scholar 

  10. J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev. Lett. 106, 045901 (2011)

    Article  ADS  Google Scholar 

  11. J.-S. Wang, J. Wang, J.T. Lu, Eur. Phys. J. B 62, 381 (2008)

    Article  ADS  Google Scholar 

  12. E. Lampin, P.L. Palla, P.-A. Francioso, F. Cleri, J. Appl. Phys. 114, 033525 (2013)

    Article  ADS  Google Scholar 

  13. E. Lampin, Q.-H. Nguyen, P.A. Francioso, F. Cleri, Appl. Phys. Lett. 100, 131906 (2012)

    Article  ADS  Google Scholar 

  14. C. Melis, L. Colombo, Phys. Rev. Lett. 112, 065901 (2014)

    Article  ADS  Google Scholar 

  15. D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, 2000)

  16. F. Müller-Plate, J. Chem. Phys. 106, 6082 (1997)

    Article  ADS  Google Scholar 

  17. A.J.H. McGaughey, C.H. Amon, J.E. Turney, E.S. Landry, Phys. Rev. B 79, 064301 (2009)

    Article  ADS  Google Scholar 

  18. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Sanders International Editions, London, 1976)

  19. C.J. Glassbrenner, G.A. Slack, Phys. Rev. 137, A1058 (1964)

    Article  Google Scholar 

  20. C. Abs da Cruz, K. Termentzidis, P. Chantrenne, X. Kleber, J. Appl. Phys. 110, 034309 (2011)

    Article  Google Scholar 

  21. P.C. Howell, J. Chem. Phys. 137, 224111 (2012)

    Article  ADS  Google Scholar 

  22. S. Plimpton, J. Comput. Phys. 117, 1 (1995). See also the following site: http://lammps.sandia.gov

    Article  URL  ADS  MATH  Google Scholar 

  23. J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, S. Yip, Phys. Rev. B 58, 2539 (1998)

    Article  ADS  Google Scholar 

  24. D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 81, 214305 (2010)

    Article  ADS  Google Scholar 

  25. W. Jang, J.E. Garay, C. Dames, Z. Wang, J.E. Alaniz, Nano Lett. 6, 2206 (2011)

    Google Scholar 

  26. A. Mattoni, L. Colombo, Phys. Rev. B 78, 075408 (2008)

    Article  ADS  Google Scholar 

  27. Y. He, D. Donadio, G. Galli, Appl. Phys. Lett. 98, 144101 (2011)

    Article  ADS  Google Scholar 

  28. J. Cue, J.K. Eliason, A.J. Minnich, T. Kehoe, C.M.S. Torres, G. Chen, K.A. Nelson, J.A. Johnson, A.A. Maznev, Phys. Rev. Lett. 110, 1079 (2010)

    Google Scholar 

  29. G. Chen A.S. Henry, J. Comput. Theor. Nanosci. 5, 1 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Colombo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melis, C., Dettori, R., Vandermeulen, S. et al. Calculating thermal conductivity in a transient conduction regime: theory and implementation. Eur. Phys. J. B 87, 96 (2014). https://doi.org/10.1140/epjb/e2014-50119-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50119-0

Keywords

Navigation