Skip to main content
Log in

Simple nonlinear systems and navigating catastrophes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Tipping points are a common occurrence in complex adaptive systems. In such systems feedback dynamics strongly influence equilibrium points and they are one of the principal concerns of research in this area. Tipping points occur as small changes in system parameters result in disproportionately large changes in the global properties of the system. In order to show how tipping points might be managed we use the Maximum Entropy (MaxEnt) method developed by Jaynes to find the fixed points of an economic system in two different ways. In the first, economic agents optimise their choices based solely on their personal benefits. In the second they optimise the total benefits of the system, taking into account the effects of all agent’s actions. The effect is to move the game from a recently introduced dual localised Lagrangian problem to that of a single global Lagrangian. This leads to two distinctly different but related solutions where localised optimisation provides more flexibility than global optimisation. This added flexibility allows an economic system to be managed by adjusting the relationship between macro parameters, in this sense such manipulations provide for the possibility of “steering” an economy around potential disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Solé, Phase Transitions (Princeton University Press, Princeton, 2011)

  2. T. Lux, M. Marchesi, Nature 397, 498 (1999)

    Article  ADS  Google Scholar 

  3. B. Mandelbrot, J. Business 36, 394 (1963)

    Article  Google Scholar 

  4. L. Bachelier, Louis Bachelier’s Theory of Speculation: the Origins of Modern Finance (Princeton University Press, Princeton, 2006), Vol. 13

  5. Y. Sato, E. Akiyama, J.D. Farmer, Proc. Natl. Acad. Sci. 99, 4748 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. E.T. Jaynes, Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. D. Wolpert, M.S. Harré, E. Olbrich, N. Bertschinger, J. Jost, Phys. Rev. E 85, 036102 (2012)

    Article  ADS  Google Scholar 

  8. J.K. Goeree, C.A. Holt, Proc. Natl. Acad. Sci. 96, 10564 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. S.P. Anderson, J.K. Goeree, C.A. Holt, Scandinavian J. Econ. 106, 581 (2004)

    Article  Google Scholar 

  10. A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. Lett. 95, 238701 (2005)

    Article  ADS  Google Scholar 

  11. J.M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, Oxford, 1992)

  12. W.A. Brock, S.N. Durlauf, Rev. Econ. Stud. 68, 235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Cobb, Behav. Sci. 23, 360 (1978)

    Article  MathSciNet  Google Scholar 

  14. E.J. Wagenmakers, P. Molenaar, R.P.P.P. Grasman, P.A.I. Hartelman, H.L.J. van der Maas, Physica D 211, 263 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. D.C. Jiles, D.L. Atherton, J. Magn. Magn. Mater. 61, 48 (1986)

    Article  ADS  Google Scholar 

  16. R.B. Alley et al., Science 299, 2005 (2003)

    Article  ADS  Google Scholar 

  17. E.C. Zeeman, Sci. Am. 234, 65 (1976)

    Article  Google Scholar 

  18. M. Beekman, D.J.T. Sumpter, F.L.W. Ratnieks, Proc. Natl. Acad. Sci. 98, 9703 (2001)

    Article  ADS  Google Scholar 

  19. R.D. McKelvey, T.R. Palfrey, Games Econ. Behav. 10, 6 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. R.D. McKelvey, T.R. Palfrey, Exp. Econ. 1, 9 (1998)

    MATH  Google Scholar 

  21. W. Yoshida, R.J. Dolan, K.J. Friston, PLoS Comput. Biol. 4, e1000254 (2008)

    Article  MathSciNet  Google Scholar 

  22. D. Wolpert, J. Jamison, D. Newth, M.S. Harré, BE J. Theor. Econ. 11, article 18 (2011)

    Google Scholar 

  23. J.F. Nash et al., Proc. Natl. Acad. Sci. 36, 48 (1950)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley-interscience, 2006)

  25. R. Axelrod, Genetic Algorithms and Simulated Annealing 3, 32 (1987)

    Google Scholar 

  26. M.J. Osborne, A. Rubinstein, A course in Game Theory (MIT press, 1994)

  27. M.S. Harré, Ph.D. thesis, University of Sydney, 2009

  28. D. Helbing, A mathematical model for behavioral changes by pair interactions, in Economic Evolution and Demographic Change (Springer, 1992), pp. 330–348

  29. A. Traulsen, J.M. Pacheco, L.A. Imhof, Phys. Rev. E 74, 021905 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  30. A.R. Plastino, A. Plastino, Physica A 258, 429 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Cont, J.P. Bouchaud, Macroeconomic Dynamics 4, 170 (2000)

    Article  MATH  Google Scholar 

  32. P.U. Clark et al., Nature 415, 863 (2002)

    Article  ADS  Google Scholar 

  33. O. Hoegh-Guldberg et al., Science 318, 1737 (2007)

    Article  ADS  Google Scholar 

  34. T.M. Lenton, H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, H.J. Schellnhuber, Proc. Natl. Acad. Sci. 105, 1786 (2008)

    Article  MATH  ADS  Google Scholar 

  35. V. Dakos, M. Scheffer, E.H. Van Nes, V. Brovkin, V. Petoukhov, H. Held, Proc. Natl. Acad. Sci. 105, 14308 (2008)

    Article  ADS  Google Scholar 

  36. M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. Van Nes, M. Rietkerk, G. Sugihara, Nature 461, 53 (2009)

    Article  ADS  Google Scholar 

  37. T.M. Lenton, Nat. Climate Change 1, 201 (2011)

    Article  ADS  Google Scholar 

  38. T.M. Lenton, V.N. Livina, V. Dakos, E.H. Van Nes, M. Scheffer, Philos. Trans. Roy. Soc. A 370, 1185 (2012)

    Article  ADS  Google Scholar 

  39. J. Albrecht, D. François, K. Schoors, Energy Policy 30, 727 (2002)

    Article  Google Scholar 

  40. M.O. Hill, Ecology 54, 427 (1973)

    Article  Google Scholar 

  41. M. Scheffer et al., Nature 413, 591 (2001)

    Article  ADS  Google Scholar 

  42. V. Plerou, P. Gopikrishnan, H.E. Stanley, Nature 421, 130 (2003)

    Article  ADS  Google Scholar 

  43. T. Poston, I. Stewart, Catastrophe Theory and its Applications (Dover Pubns., 1996), Vol. 2

  44. D. Sornette, A. Johansen, Physica A 245, 411 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  45. M.S. Harré, T. Bossomaier, Europhys. Lett. 87, 18009 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Harré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harré, M., Atkinson, S. & Hossain, L. Simple nonlinear systems and navigating catastrophes. Eur. Phys. J. B 86, 289 (2013). https://doi.org/10.1140/epjb/e2013-31064-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31064-x

Keywords

Navigation