Skip to main content
Log in

Intelligent driving in traffic systems with partial lane discipline

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

It is a most common notion in traffic theory that driving in lanes and keeping lane changes to a minimum leads to smooth and laminar traffic flow, and hence to increased traffic capacity. On the other hand, there exist persistent vehicular traffic systems that are characterised by habitual disregarding of lane markings, and partial or complete loss of laminar traffic flow. Here, we explore the stability of such systems through a microscopic traffic flow model, where the degree of lane-discipline is taken as a variable, represented by the fraction of drivers that disregard lane markings completely. The results show that lane-free traffic may win over completely ordered traffic at high densities, and that partially ordered traffic leads to the poorest overall flow, while not considering the crash probability. Partial order in a lane-free system is similar to partial disorder in a lane-disciplined system in that both lead to decreased traffic capacity. This could explain the reason why standard enforcement methods, which rely on continuous increase of order, often fail to incur order to lane-free traffic systems. The results also provide an insight into the cooperative phenomena in open systems with self-driven particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Leutzbach, Introduction to the Theory of Traffic Flow (Springer, Berlin, 1988)

  2. D. Helbing, Verkehrsdynamik (Springer, Berlin, 1997)

  3. Traffic and Granular Flow, edited by M. Schreckenberg, D.E. Wolf (Springer, Singapore, 1998)

  4. B.S. Kerner, H. Rehborn, Phys. Rev. Lett. 49, 4030 (1997)

    Article  ADS  Google Scholar 

  5. T. Nagatani, K. Nakanishi, H. Emmerich, J. Phys. A 31, 5431 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. B.S. Kerner, P. Konhaeuser, Phys. Rev. E 48, R233 (1993)

    Article  ADS  Google Scholar 

  7. R.D. Kuehne, in Proceedings of the 9th International Symposium on Transportation and Traffic Theory, edited by I. Volmuller, R. Hamerslag (VNU Science Press, Utrecht, 1984), pp. 21−42

  8. R.D. Kuehne, in Proceedings of the 10th International Symposium on Transportation and Traffic Theory, edited by N.H. Gartner, N.H.M. Wilson (Elsevier, New York, 1987), pp. 119−137

  9. B.S. Kerner, P. Konhaeuser, Phys. Rev. E 50, 54 (1994)

    Article  ADS  Google Scholar 

  10. B.S. Kerner, H. Rehborn, Phys. Rev. E 53, R4275 (1996)

    Article  ADS  Google Scholar 

  11. D. Helbing, M. Treiber, Phys. Rev. Lett. 81, 3042 (1998)

    Article  ADS  Google Scholar 

  12. R. Herman, K. Gardels, Sci. Am. 209, 35 (1963)

    Article  Google Scholar 

  13. D.C. Gazis, Science 157, 273 (1967)

    Article  ADS  Google Scholar 

  14. R.W. Rothery, Transportation Research Board (TRB) Special Report 165, in Traffic Flow Theory, edited by N. Gartner, C.J. Messner, A.J. Rathi, 2nd edn. (1998)

  15. A. Reuschel, Öesterreichisches Ingenieur-Archiv 4, 193 (1950)

    MATH  Google Scholar 

  16. A. Reuschel, Z. Oester, Ing. Arch. Ver. 95, 59 (1950)

    Google Scholar 

  17. L.A. Pipes, J. Appl. Phys. 24, 274 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  18. G.F. Newell, Operations Res. 9, 209 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51, 1035 (1995)

    Article  ADS  Google Scholar 

  20. P.G. Gipps, Transportation Res. B 15, 105 (1981)

    Article  Google Scholar 

  21. S. Krauss, Ph.D. thesis, Cologne, 1998

  22. D. Helbing, B. Tilch, Phys. Rev. E 58, 133 (1998)

    Article  ADS  Google Scholar 

  23. http://mit.edu/its/mitsimlab.html

  24. L.C. Davis, Phys. Rev. E 69, 161081 (2004)

    Google Scholar 

  25. A.K. Maurya, P. Chakroborty, in Proceedings of the International Conference on Best Practices to Relieve Congestion on Mixed Urban Streets in Developing Countries, Chennai, 2008, pp. 165–174

  26. G. Asaithambi, V. Kanagaraj, K. Srinivasan, R. Srinivasan, Mixed Traffic Characteristics on Urban Arterials with Significant Volumes of Motorized Two-Wheeler Volumes: Role of Composition, Intra-Class Variability, and Lack of Lane Discipline, Prod. Transportation Research Board, 91st Annual Meeting, Washington DC, Paper #12-4303 (2012)

  27. A. Nakayama, K. Hasebe, Y. Sugiyama, Comput. Phys. Commun. 177, 162 (2007)

    Article  ADS  Google Scholar 

  28. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 62, 1805 (2000)

    Article  ADS  Google Scholar 

  29. M. Treiber, A. Kesting, Traffic Flow Dynamics (Springer, New York, 2012)

  30. M. Treiber, D. Helbing, Phys. Rev. E 68, 46119 (2003)

    Article  ADS  Google Scholar 

  31. T. Nagatani, Phys. Rev. E 58, 4271 (1998)

    Article  ADS  Google Scholar 

  32. H. Ez-Zahraouy, A. Benyoussef, Eur. Phys. J. B 64, 573 (2008)

    Article  ADS  MATH  Google Scholar 

  33. I. Lubashevsky, R. Mahnke, Phys. Rev. E 62, 6082 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Assadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assadi, H., Emmerich, H. Intelligent driving in traffic systems with partial lane discipline. Eur. Phys. J. B 86, 178 (2013). https://doi.org/10.1140/epjb/e2013-30511-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30511-0

Keywords

Navigation