Skip to main content
Log in

Spectrum of the vortex bound states of the Dirac and Schrödinger Hamiltonian in the presence of superconducting gaps

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the vortex bound states of both Schrödinger and Dirac Hamiltonian with the s-wave superconducting pairing gap by solving the mean-field Bogoliubov-de-Gennes equations. The exact vortex bound states spectrum is numerically determined by the integration method, and also accompanied by the quasi-classical analysis. It is found that the bound state energies are proportional to the vortex angular momentum when the chemical potential is large enough. By applying the external magnetic field, the vortex bound state energies of the Dirac Hamiltonian are almost unchanged; whereas the energy shift of the Schrödinger Hamiltonian is proportional to the magnetic field. These qualitative differences may serve as an indirect evidence of the existence of Majorana fermions in which the zero mode exists in the case of the Dirac Hamiltonian only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  3. D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001)

    Article  ADS  Google Scholar 

  4. A. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  MATH  Google Scholar 

  6. A. Stern, F. von Oppen, E. Mariani, Phys. Rev. B 70, 205338 (2004)

    Article  ADS  Google Scholar 

  7. M. Stone, S.B. Chung, Phys. Rev. B 73, 014505 (2006)

    Article  ADS  Google Scholar 

  8. V. Gurarie, L. Radzihovsky, A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005)

    Article  ADS  Google Scholar 

  9. C.H. Cheng, S.K. Yip, Phys. Rev. Lett. 95, 070404 (2005)

    Article  ADS  Google Scholar 

  10. S. Tewari, S. Das Sarma, C. Nayak, C. Zhang, P. Zoller, Phys. Rev. Lett. 98, 010506 (2007)

    Article  ADS  Google Scholar 

  11. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  12. J.E. Moore, L. Balents, Phys. Rev. B 75, 121306(R) (2007)

    Article  ADS  Google Scholar 

  13. L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  14. R. Roy, Phys. Rev. B 79, 195322 (2009)

    Article  ADS  Google Scholar 

  15. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  16. J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010)

    Article  ADS  Google Scholar 

  17. J. Alicea, Phys. Rev. B 81, 125318 (2010)

    Article  ADS  Google Scholar 

  18. A.C. Potter, P.A. Lee, Phys. Rev. Lett. 105, 227003 (2010)

    Article  ADS  Google Scholar 

  19. K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103, 237001 (2009)

    Article  ADS  Google Scholar 

  20. L. Kramer, W. Pesch, Z. Phys. 269, 59 (1974)

    Article  ADS  Google Scholar 

  21. F. Gygi, M. Schluter, Phys. Rev. B 41, 822 (1990)

    Article  ADS  Google Scholar 

  22. R. Sensarma, M. Randeria, T.-L. Ho, Phys. Rev. Lett. 96, 090403 (2006)

    Article  ADS  Google Scholar 

  23. W.L. Clinton, Phys. Rev. B 46, 5742 (1992)

    Article  ADS  Google Scholar 

  24. C.K. Lu, I.F. Herbut, Phys. Rev. B 82, 144505 (2010)

    Article  ADS  Google Scholar 

  25. I.F. Herbut, C.K. Lu, Phys. Rev. B 83, 125412 (2011)

    Article  ADS  Google Scholar 

  26. G.E. Volovik, JETP Lett. 70, 609 (1999)

    Article  ADS  Google Scholar 

  27. P.G. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley, Redwood City, 1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Ho Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, CH. Spectrum of the vortex bound states of the Dirac and Schrödinger Hamiltonian in the presence of superconducting gaps. Eur. Phys. J. B 86, 5 (2013). https://doi.org/10.1140/epjb/e2012-30529-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30529-8

Keywords

Navigation