Skip to main content
Log in

Photon-field-shape effects on Rabi splitting energies in CuCl microcavities

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have investigated the photon-field-shape effects on Rabi splitting energies in CuCl microcavities with HfO2/SiO2 distributed Bragg reflectors (DBRs). The CuCl active layer was prepared by vacuum deposition, while HfO2 and SiO2 layers were prepared by rf magnetron sputtering. The photon-field shape was tuned to a node-type or an antinode-type by changing the order of the refractive indices in the DBR. In order to control of the Rabi splitting energies, the active-layer thickness was changed from λ/12 to 9λ/20. In angle-resolved reflectance spectra at 10 K, three cavity polaritons resulting from the strong coupling between the Z3 and Z1,2 excitons and cavity photon were clearly detected. We estimated the energies of the exciton-photon interaction, the so-called vacuum Rabi splitting energies, from the analysis of the cavity polariton dispersions using a phenomenological Hamiltonian for the strong exciton-photon coupling. The active-layer-thickness dependence of the Rabi splitting energies are explained by a semi-quantitative analysis taking account of the overlap between the exciton and photon-field wave functions. We have demonstrated that the photon-field shape drastically affects the active-layer-thickness dependence of the Rabi splitting energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)

  2. A. Tredicucci, Y. Chen, V. Pellegrini, M. Borger, L. Sorba, F. Beltram, F. Bassani, Phys. Rev. Lett. 75, 3906 (1995)

    Article  ADS  Google Scholar 

  3. G. Oohata, T. Nishioka, D. Kim, H. Ishihara, M. Nakayama, Phys. Rev. B 78, 233304 (2008)

    Article  ADS  Google Scholar 

  4. K. Miyazaki, D. Kim, T. Kawase, M. Kameda, M. Nakayama, Jpn J. Appl. Phys. 49, 042802 (2010)

    Article  ADS  Google Scholar 

  5. M. Nakayama, K. Miyazaki, T. Kawase, D. Kim, Phys. Rev. B 83, 075318 (2011)

    Article  ADS  Google Scholar 

  6. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, E. Hanamura, Excitonic Processes in Solids (Springer, New York, 1986), p. 116

  7. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, Appl. Opt. 41, 3256 (2002)

    Article  ADS  Google Scholar 

  8. M.S. Skolnick, T.A. Fisher, D.M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998)

    Article  ADS  Google Scholar 

  9. S. Pau, G. Björk, J. Jacobson, H. Cao, Y. Yamamoto, Phys. Rev. B 51, 14437 (1995)

    Article  ADS  Google Scholar 

  10. G. Panzarini, L.C. Andreani, A. Armitage, D. Baxter, M.S. Skolnick, V.N. Astratov, J.S. Roberts, A.V. Kavokin, M.R. Vladimirova, M.A. Kaliteevski, Phys. Solid State 41, 1223 (1999)

    Article  ADS  Google Scholar 

  11. C.F. Klingshirn, Semiconductor Optics (Splinger-Verlag, Berlin/Heidelberg, 2003), Chap. 4, p. 81

  12. W. Staude, Phys. Status Solidi B 43, 367 (1971)

    Article  ADS  Google Scholar 

  13. S. Christopoulos, G. Baldassarri Höger von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  14. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008)

    Article  ADS  Google Scholar 

  15. R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. B 80, 233301 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Nakayama.

Additional information

Contribution to the Topical Issue “Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials”, edited by Maria Antonietta Loi, Jasper Knoester and Paul H. M. van Loosdrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawase, T., Miyazaki, K., Kim, D. et al. Photon-field-shape effects on Rabi splitting energies in CuCl microcavities. Eur. Phys. J. B 86, 69 (2013). https://doi.org/10.1140/epjb/e2012-30505-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30505-4

Keywords

Navigation