Regular Article

The European Physical Journal B

, 85:130

Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links

  • G. R. BerdiyorovAffiliated withDepartement Fysica, Universiteit Antwerpen Email author 
  • , A. R. de C. RomagueraAffiliated withDepartamento de Física, Universidade Federal Rural de Pernambuco
  • , M. V. MiloševićAffiliated withDepartement Fysica, Universiteit Antwerpen
  • , M. M. DoriaAffiliated withUniversidade Federal do Rio de Janeiro
  • , L. CovaciAffiliated withDepartement Fysica, Universiteit Antwerpen
  • , F. M. PeetersAffiliated withDepartement Fysica, Universiteit Antwerpen

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Static and dynamic properties of superconducting vortices in a superconducting stripe with a periodic array of weakly-superconducting (or normal metal) regions are studied in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau theory is used to describe the electronic transport, where the anisotropy is included through the spatially-dependent critical temperature T c . Superconducting vortices penetrating into the weak-superconducting region with smaller T c are more mobile than the ones in the strong superconducting regions. We observe periodic entrance and exit of vortices which reside in the weak link for some short interval. The mobility of the weakly-pinned vortices can be reduced by increasing the uniform applied magnetic field leading to distinct features in the voltage vs. magnetic field response of the system.

Keywords

Solid State and Materials