Skip to main content
Log in

Effect of lattice relaxation on spin density of nitrogen-vacancy centers in diamond and oscillator strength calculations

  • Regular Article
  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using a generalized Hubbard Hamiltonian, many-electron wavefunctions of negatively charged (NV) and neutral nitrogen-vacancy (NV0) centers in diamond were calculated. We report the effect of symmetric relaxation of surrounding atoms on the spin density, calculated from the many electron wavefunctions in the ground and excited states. We evaluated the error, that, arises in estimation of spin density when lattice relaxation effect is neglected in Electron Paramagnetic Resonance experiment and showed that the ground state spin density distribution is accessible in outward relaxations. The computed oscillator strengths give a higher efficiency for the 1.945 eV photoluminescence (PL) line of NV with respect to 2.156 eV PL line of NV0 which agrees well with experiment. This result is explained based on the largest the ground state spin among available values for the NV with respect to NV0. The transition probability between degenerate ground and excited states slightly depends on the S z value. Finally, we report on the electronic configurations which contribute to the ground and excited states and discuss the population variation of electronic configurations with relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wrachtrup, F. Jelezko, J. Phys.: Condens. Matter 18, S807 (2006)

    Article  ADS  Google Scholar 

  2. T.A. Kennedy, F.T. Charnock, J.S. Colton, J.E. Butler, R.C. Linares, P.J. Doering, Phys. Stat. Sol. (b) 233, 416 (2002)

    Article  ADS  Google Scholar 

  3. T. Gaebl et al., Nature Phys. 2, 408 (2006)

    Article  ADS  Google Scholar 

  4. F. Jelezco et al., Appl. Phys. Lett. 81, 2160 (2002)

    Article  ADS  Google Scholar 

  5. A. Gruber et al., Science 276, 2012 (1997)

    Article  Google Scholar 

  6. J.H.N. Loubser, J.A. van Wyk, Diamond Res. 11, 4 (1977)

    Google Scholar 

  7. J.H.N. Loubser, J.A. van Wyk, Rep. Prog. Phys. 41, 1201 (1978)

    Article  ADS  Google Scholar 

  8. J. Walker, Rep. Prog. Phys. 42, 1605 (1979)

    Article  ADS  Google Scholar 

  9. G. Davies, J. Phys. C 12, 2551 (1979)

    Article  ADS  Google Scholar 

  10. X.F. He, N.B. Manson, P.T.H. Fisk, Phys. Rev. B 47, 8809 (1993)

    Article  ADS  Google Scholar 

  11. X.F. He, N.B. Manson, P.T.H. Fisk, Phys. Rev. B 47, 8816 (1993)

    Article  ADS  Google Scholar 

  12. N.B. Manson, J.P. Harrison, M.J. Sellars, Phys. Rev. B 74, 104303 (2006)

    Article  ADS  Google Scholar 

  13. M. Heidari Saani, H. Hashemi, A. Ranjbar, M.A. Vesaghi, A. Shafiekhani, Eur. Phys. J. B 65, 219 (2008)

    Article  ADS  Google Scholar 

  14. A. Gali, Phys. Rev. B 79, 235210 (2009)

    Article  ADS  Google Scholar 

  15. J.A. van Wyk, O.D. Tucker, M.E. Newton, J.M. Baker, G.S. Wood, P. Spear, Phys. Rev. B 52, 12657 (1995)

    Article  ADS  Google Scholar 

  16. O.D. Tucker, M.E. Newton, J.M. Baker, Phys. Rev. B 50, 15586 (1994)

    Article  ADS  Google Scholar 

  17. M. Heidari Saani, M.A. Vesaghi, K. Esfarjani, T. Ghods Elahi, M. Sayari, H. Hashemi, N. Gorjizadeh, Phys. Rev. B 71, 035202 (2005)

    Article  ADS  Google Scholar 

  18. A. Gali, M. Fyta, E. Kaxiras, Phys. Rev. B 77, 155206 (2008)

    Article  ADS  Google Scholar 

  19. J.P. Goss, R. Jones, S.J. Breuer, P.R. Briddon, S. Oberg, Phys. Rev. Lett. 30, 3041 (1996)

    Article  ADS  Google Scholar 

  20. Yuchen Ma, M. Rohlfing, A. Gali, Phys. Rev. B 81, 041204 (2010)

    Article  ADS  Google Scholar 

  21. A.S. Zyubin, A.M. Mebel, M. Hayasht, H.C. Chang, S.H. Lin, J. Comput. Chem. 30, 119 (2009)

    Article  Google Scholar 

  22. Gaussian 98, Revision A.7, edited by M.J. Frisch et al. (Gaussian, Inc., Pittsburgh PA, 1998)

  23. C.A. Coulson, M.J. Keasley, Proc. R. Soc. Lond. Ser. A 241, 433 (1957)

    Article  ADS  Google Scholar 

  24. M. Heidari Saani, M.A. Vesaghi, K. Esfarjani, A. Shafiekhani, Diamond Rel. Mater. 13, 2125 (2004)

    Article  ADS  Google Scholar 

  25. S. Felton, A.M. Edmonds, M.E. Newton, P.M. Martineau, D. Fisher, D.J. Twitchen, Phys. Rev. B 77, 081201 (2008)

    Article  ADS  Google Scholar 

  26. S. Felton, A.M. Edmonds, M.E. Newton, P.M. Martineau, D. Fisher, D.J. Twitchen, J.M. Baker, Phys. Rev. B 79, 075203 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heidari Saani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babamoradi, M., Heidari Saani, M., Ranjbar, A. et al. Effect of lattice relaxation on spin density of nitrogen-vacancy centers in diamond and oscillator strength calculations. Eur. Phys. J. B 84, 1–9 (2011). https://doi.org/10.1140/epjb/e2011-20370-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20370-0

Keywords

Navigation