The European Physical Journal B

, Volume 77, Issue 3, pp 305–329

Modelling non-adiabatic processes using correlated electron-ion dynamics

  • E. J. McEniry
  • Y. Wang
  • D. Dundas
  • T. N. Todorov
  • L. Stella
  • R. P. Miranda
  • A. J. Fisher
  • A. P. Horsfield
  • C. P. Race
  • D. R. Mason
  • W. M.C. Foulkes
  • A. P. Sutton
Colloquium

DOI: 10.1140/epjb/e2010-00280-5

Cite this article as:
McEniry, E., Wang, Y., Dundas, D. et al. Eur. Phys. J. B (2010) 77: 305. doi:10.1140/epjb/e2010-00280-5

Abstract.

Here we survey the theory and applications of a family of methods (correlated electron-ion dynamics, or CEID) that can be applied to a diverse range of problems involving the non-adiabatic exchange of energy between electrons and nuclei. The simplest method, which is a paradigm for the others, is Ehrenfest Dynamics. This is applied to radiation damage in metals and the evolution of excited states in conjugated polymers. It is unable to reproduce the correct heating of nuclei by current carrying electrons, so we introduce a moment expansion that allows us to restore the spontaneous emission of phonons. Because of the widespread use of Non-Equilibrium Green's Functions for computing electric currents in nanoscale systems, we present a comparison of this formalism with that of CEID with open boundaries. When there is strong coupling between electrons and nuclei, the moment expansion does not converge. We thus conclude with a reworking of the CEID formalism that converges systematically and in a stable manner.

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • E. J. McEniry
    • 1
  • Y. Wang
    • 2
  • D. Dundas
    • 3
  • T. N. Todorov
    • 3
  • L. Stella
    • 4
  • R. P. Miranda
    • 5
    • 6
  • A. J. Fisher
    • 5
    • 6
  • A. P. Horsfield
    • 7
  • C. P. Race
    • 8
  • D. R. Mason
    • 8
  • W. M.C. Foulkes
    • 8
  • A. P. Sutton
    • 8
  1. 1.Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität BochumBochumGermany
  2. 2.Department of ChemistryTulane UniversityNew OrleansUSA
  3. 3.Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University of BelfastBelfastUK
  4. 4.Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Dpto. Física de Materiales, Universidad del País VascoSan SebastiánSpain
  5. 5.Department of Physics and AstronomyUniversity College LondonLondonUK
  6. 6.London Centre for Nanotechnology, 17-19 Gordon StreetLondonUK
  7. 7.Department of MaterialsLondonUK
  8. 8.Department of PhysicsLondonUK