Solid State and Materials

The European Physical Journal B

, Volume 72, Issue 1, pp 53-57

First online:

Open Access This content is freely available online to anyone, anywhere at any time.

First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal

  • V. E. AlexandrovAffiliated withMax-Planck-Institut für Festkörperforschung Email author 
  • , E. A. KotominAffiliated withMax-Planck-Institut für FestkörperforschungInstitute of Solid State Physics, University of Latvia
  • , J. MaierAffiliated withMax-Planck-Institut für Festkörperforschung
  • , R. A. EvarestovAffiliated withDepartment of Quantum Chemistry, St.Petersburg State University


The structural and electronic properties of the neutral and positively charged oxygen vacancies (F and F+ centres) in the bulk and on the (001) surfaces of SrTiO3 crystal are examined within the hybrid Hartree-Fock and density functional theory (HF-DFT) method based upon the linear combination of atomic orbital (LCAO) approach. A comparison of the formation energy for surface and bulk defects indicates a perceptible propensity for the segregation of neutral and charged vacancies to both SrO and TiO2 surface terminations with a preference in the latter case which is important for interpretation of space charge effects at ceramic interfaces. It is found that the vacancies reveal more shallow energy levels in the band gap on surfaces rather than in the bulk, in particular, on the TiO2 surface. The charged F+ centre has significantly deeper energy levels both in bulk and on the surfaces, as compared with the neutral F centre.


61.72.jd Vacancies 71.15.Ap Basis sets and related methodology 61.72.jn Color centers