Skip to main content
Log in

Detecting and quantifying temporal correlations in stochastic resonance via information theory measures

  • Topical issue on Stochastic Resonance
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show that Information Theory quantifiers are suitable tools for detecting and for quantifying noise-induced temporal correlations in stochastic resonance phenomena. We use the Bandt & Pompe (BP) method [Phys. Rev. Lett. 88, 174102 (2002)] to define a probability distribution, P, that fully characterizes temporal correlations. The BP method is based on a comparison of neighboring values, and here is applied to the temporal sequence of residence-time intervals generated by the paradigmatic model of a Brownian particle in a sinusoidally modulated bistable potential. The probability distribution P generated via the BP method has associated a normalized Shannon entropy, H[P], and a statistical complexity measure, C[P], which is defined as proposed by Rosso et al. [Phys. Rev. Lett. 99, 154102 (2007)]. The statistical complexity quantifies not only randomness but also the presence of correlational structures, the two extreme circumstances of maximum knowledge (“perfect order") and maximum ignorance (“complete randomness") being regarded an “trivial", and in consequence, having complexity C = 0. We show that both, H and C, display resonant features as a function of the noise intensity, i.e., for an optimal level of noise the entropy displays a minimum and the complexity, a maximum. This resonant behavior indicates noise-enhanced temporal correlations in the sequence of residence-time intervals. The methodology proposed here has great potential for the precise detection of subtle signatures of noise-induced temporal correlations in real-world complex signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. Lett. 62, 349 (1989)

    Google Scholar 

  • L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Google Scholar 

  • R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, Tellus 34, 10 (1982)

    Google Scholar 

  • R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)

  • K. Wiesenfeld, F. Moss, Nature 373, 6509 (1995)

    Google Scholar 

  • B. Lindner, J. Garcia-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)

  • B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988)

    Google Scholar 

  • G. Giacomelli, F. Marin, I. Rabbiosi, Phys. Rev. Lett. 82, 675 (1999)

    Google Scholar 

  • R.L. Badzey, P. Mohanty, Nature 437, 995 (2005)

    Google Scholar 

  • P. Jung, P. Hanggi, Phys. Rev. A 44, 8032 (1991)

    Google Scholar 

  • J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Nature 365, 6444 (1993)

    Google Scholar 

  • J.E. Levin, J.P. Miller, Nature 380, 6570 (1996)

    Google Scholar 

  • J.J. Collins, T.T. Imhoff, P. Grigg, Nature 383, 770 (1996)

    Google Scholar 

  • D. Russell, L. Wilkens, F. Moss, Nature 402, 291 (1999)

    Google Scholar 

  • M.H. Choi, R.F. Fox, P. Jung, Phys. Rev. E 57, 6335 (1998)

    Google Scholar 

  • L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74, (1995) 1052 (1995)

    Google Scholar 

  • C. Heneghan, C.C. Chow, J.J. Collins, T.T. Imhoff, S.B. Lowen, M.C. Teich, Phys. Rev. E 54, R2228 (1996)

  • A.R. Bulsara, A. Zador, Phys. Rev. E 54, R2185 (1996)

  • A. Neiman, B. Shulgin, V. Anishchenko, E. Ebeling, L. Schimansky-Geier, J. Freund, Phys. Rev. Lett. 76, 4299 (1996)

    Google Scholar 

  • M.E. Inchiosa, J.W.C. Robinson, A.R. Bulsara, Phys. Rev. Lett. 85, 3369 (2000)

    Google Scholar 

  • I. Goychuk, P. Hänggi, Phys. Rev. E 61, 4272 (2000)

    Google Scholar 

  • I. Goychuk, Phys. Rev. E 64, 021909 (2001)

    Google Scholar 

  • I. Goychuk, P. Hänggi, Eur. Phys. J. B (2009), DOI: 10.1140/epjb/e2009-00049-y

  • R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

  • M.T. Martín, A. Plastino, O.A. Rosso, Phys. Lett. A 311, 126 (2003)

    Google Scholar 

  • P.W. Lamberti, M.T. Martín, A. Plastino, O.A. Rosso, Physica A 334, 119 (2004)

    Google Scholar 

  • For discussion of other simple alternatives of the disequilibrium Q and the corresponding advantages and disadvantages of each ones see Lamberti2004

  • A. Witt, A. Neiman, J. Kurths, Phys. Rev. E 55, 5050 (1997)

    Google Scholar 

  • O.A. Rosso, C. Masoller, Phys. Rev. E (2009), in press

  • O.A. Rosso, H. Larrondo, M.T. Martin, A. Plastino, M.A. Fuentes, Phys. Rev. Lett. 99, 154102 (2007)

    Google Scholar 

  • C.E. Shannon, Bell System Technical Journal 27, 379 (1948)

    Google Scholar 

  • P. Grassberger, Int. J. Theo. Phys. 25, 907 (1986)

    Google Scholar 

  • P. Grassberger, Physica A 140, 319 (1986)

  • J.P. Crutchfield, K. Young, Phys. Rev. Lett. 63, 105 (1989)

    Google Scholar 

  • R. Wackerbauer, A. Witt, H. Altmanspacher, J. Kurths, H. Scheingraber, Chaos Solitons & Fractals 4, 133 (1994)

    Google Scholar 

  • D.P. Feldman, J.P. Crutchfield, Phys. Lett. A 238, 244 (1998)

    Google Scholar 

  • J.S. Shiner, M. Davison, P.T. Landsberg, Phys. Rev. E 59, 1459 (1999)

    Google Scholar 

  • H. Kantz, J. Kurths, G. Meyer-Kress, Nonlinear Analysis of Physiological Data (Springer, Berlin, 1998)

  • T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

  • W.K. Wootters, Phys. Rev. D 23, 357 (1981)

    Google Scholar 

  • M.T. Martín, A. Plastino, O.A. Rosso, Physica A 369, 439 (2006)

    Google Scholar 

  • A.R. Plastino, A. Plastino, Phys. Rev. E 54, 4423 (1996)

    Google Scholar 

  • X. Calbet, R. López-Ruiz, Phys. Rev. E 63, 066116 (2001)

    Google Scholar 

  • O.A. Rosso, M.T. Martín, A. Figliola, K. Keller, A. Plastino, Journal on Neuroscience Methods 153, 163 (2006)

    Google Scholar 

  • A. M. Kowalski, M.T. Martín, A. Plastino, O.A. Rosso, Physica D 233, 21 (2007)

    Google Scholar 

  • L. Zunino, D.G. Pérez, M.T. Martín, A. Plastino, M. Garavaglia, O.A. Rosso, Phys. Rev. E 75, 031115 (2007)

    Google Scholar 

  • C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)

    Google Scholar 

  • K. Keller, M. Sinn, Physica A 356, 114 (2005)

    Google Scholar 

  • H.A. Larrondo, M.T. Martín, C.M. González, A. Plastino, O.A. Rosso, Phys. Lett. A 352, 421 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Masoller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosso, O., Masoller, C. Detecting and quantifying temporal correlations in stochastic resonance via information theory measures. Eur. Phys. J. B 69, 37–43 (2009). https://doi.org/10.1140/epjb/e2009-00146-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00146-y

PACS

Navigation