Skip to main content
Log in

Experimental level densities of atomic nuclei

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)

    Article  ADS  Google Scholar 

  2. H.A. Bethe, Phys. Rev. 50, 332 (1936)

    Article  ADS  Google Scholar 

  3. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  5. T. Ericson, Nucl. Phys. A 11, 481 (1959)

    Article  Google Scholar 

  6. Data from the NNDC On-Line Data Service database, available at http://www.nndc.bnl.gov/nudat2/

  7. RIPL-3 Handbook for calculation of nuclear reaction, (2009), available at http://www-nds.iaea.org/RIPL-3/

  8. H.K. Vonach, J.R. Huizenga, Phys. Rev. 149, 844 (1966)

    Article  ADS  Google Scholar 

  9. A.M. Hoogenboom, Nucl. Instrum. Methods 3, 57 (1958)

    Article  Google Scholar 

  10. Y. Kalmykov, C. Özen, K. Langanke, G. Martínez-Pinedo, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 99, 202502 (2007)

    Article  ADS  Google Scholar 

  11. A. Schiller, L. Bergholt, M. Guttormsen, E. Melby, J. Rekstad, S. Siem, Nucl. Instrum. Methods Phys. Res. A 447, 494 (2000)

    Article  ADS  Google Scholar 

  12. A.C. Larsen et al., Phys. Rev. C 83, 034315 (2011)

    Article  ADS  Google Scholar 

  13. M. Guttormsen et al., Phys. Rev. C 71, 044307 (2005)

    Article  ADS  Google Scholar 

  14. R. Chankova et al., Phys. Rev. C 73, 034311 (2006)

    Article  ADS  Google Scholar 

  15. A.C. Larsen et al., Phys. Rev. Lett. 111, 242504 (2013)

    Article  ADS  Google Scholar 

  16. M. Guttormsen, A. Bürger, T.E. Hansen, N. Lietaer, Nucl. Instrum. Methods Phys. Res. A 648, 168 (2011)

    Article  ADS  Google Scholar 

  17. M. Guttormsen, A. Atac, G. Løvhøiden, S. Messelt, T. Ramsøy, J. Rekstad, T.F. Thorsteinsen, T.S. Tveter, Z. Zelazny, Phys. Scr. T 32, 54 (1990)

    Article  ADS  Google Scholar 

  18. T.G. Tornyi, M. Guttormsen, T.K. Eriksen, A. Görgen, F. Giacoppo, T.W. Hagen, A. Krasznahorkay, A.C. Larsen, T. Renstrøm, S.J. Rose, S. Siem, G.M. Tveten, Phys. Rev. C 89, 0443232 (2014)

    Article  Google Scholar 

  19. M. Guttormsen, T.S. Tveter, L. Bergholt, F. Ingebretsen, J. Rekstad, Nucl. Instrum. Methods Phys. Res. A 374, 371 (1996)

    Article  ADS  Google Scholar 

  20. M. Guttormsen, T. Ramsøy, J. Rekstad, Nucl. Instrum. Methods Phys. Res. A 255, 518 (1987)

    Article  ADS  Google Scholar 

  21. P.A.M. Dirac, Proc. R. Soc. London A 114, 243 (1927)

    Article  ADS  MATH  Google Scholar 

  22. E. Fermi, Nuclear Physics (University of Chicago Press, 1950)

  23. D.M. Brink, PhD thesis, Oxford University, 1955

  24. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  25. Data measured at the Oslo Cyclotron Laboratory with the Oslo method, references and data can be found at http://www.mn.uio.no/fysikk/english/research/about/infrastructure/OCL/nuclear-physics-research/compilation/

  26. N.U.H. Syed, A.C. Larsen, A. Bürger, M. Guttormsen, S. Harissopulos, M. Kmiecik, T. Konstantinopoulos, M. Krtička, A. Lagoyannis, T. Lönnroth, K. Mazurek, M. Norby, H.T. Nyhus, G. Perdikakis, S. Siem, A. Spyrou, Phys. Rev. C 80, 044309 (2009)

    Article  ADS  Google Scholar 

  27. M. Guttormsen, A.C. Larsen, A. Buürger, A. Görgen, S. Harissopulos, M. Kmiecik, T. Konstantinopoulos, M. Krtička, A. Lagoyannis, T. Lönnroth, K. Mazurek, M. Norrby, H.T. Nyhus, G. Perdikakis, A. Schiller, S. Siem, A. Spyrou, N.U.H. Syed, H.K. Toft, G.M. Tveten, A. Voinov, Phys. Rev. C 83, 014312 (2011)

    Article  ADS  Google Scholar 

  28. M. Guttormsen, A.C. Larsen, F.L. Bello Garrote, Y. Byun, T.K. Eriksen, F. Giacoppo, A. Görgen, T.W. Hagen, M. Klintefjord, H.T. Nyhus, T. Renstrøm, S.J. Rose, E. Sahin, S. Siem, T.G. Tornyi, G.M. Tveten, A. Voinov, Phys. Rev. C 90, 044309 (2014)

    Article  ADS  Google Scholar 

  29. U. Agvaanluvsan, A.C. Larsen, R. Chankova, M. Guttormsen, G.E. Mitchell, A. Schiller, S. Siem, A. Voinov, Phys. Rev. Lett. 102, 162504 (2009)

    Article  ADS  Google Scholar 

  30. U. Agvaanluvsan, A.C. Larsen, M. Guttormsen, R. Chankova, G.E. Mitchell, A. Schiller, S. Siem, A. Voinov, Phys. Rev. C. 79, 014320 (2009)

    Article  ADS  Google Scholar 

  31. H.K. Toft, A.C. Larsen, U. Agvaanluvsan, A. Bürger, M. Guttormsen, G.E. Mitchell, H.T. Nyhus, A. Schiller, S. Siem, N.U.H. Syed, A. Voinov, Phys. Rev. C 81, 064311 (2010)

    Article  ADS  Google Scholar 

  32. H.K. Toft, A.C. Larsen, A. Bürger, M. Guttormsen, A. Görgen, H.T. Nyhus, T. Renstrøm, S. Siem, G.M. Tveten, A. Voinov, Phys. Rev. C 83, 044320 (2011)

    Article  ADS  Google Scholar 

  33. T. Nyhus, S. Siem, M. Guttormsen, A.C. Larsen, A. Bürger, N.U.H. Syed, H.K. Toft, G.M. Tveten, A. Voinov, Phys. Rev. C 85, 014323 (2012)

    Article  ADS  Google Scholar 

  34. L.G. Moretto, A.C. Larsen, F. Giacoppo, M. Guttormsen, S. Siem, A.V. Voinov, arXiv:1406.2642 [nucl-th] (2014)

  35. T. von Egidy, D. Bucurescu, Phys. Rev. C 80, 054310 (2009)

    Article  ADS  Google Scholar 

  36. Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 99, 162504 (2007)

    Article  ADS  Google Scholar 

  37. A. Voinov et al., Phys. Rev. C 79, 031301 (2009)

    Article  ADS  Google Scholar 

  38. Y. Byun et al., Phys. Rev. C 90, 044303 (2014)

    Article  ADS  Google Scholar 

  39. A. Spyrou, S.N. Liddick, A.C. Larsen, M. Guttormsen, K. Cooper, A.C. Dombos, D.J. Morrissey, F. Naqvi, G. Perdikakis, S.J. Quinn, T. Renstrøm, J.A. Rodriguez, A. Simon, C.S. Sumithrarachchi, R.G.T. Zegers, Phys. Rev. Lett. 113, 232502 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guttormsen.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guttormsen, M., Aiche, M., Bello Garrote, F.L. et al. Experimental level densities of atomic nuclei. Eur. Phys. J. A 51, 170 (2015). https://doi.org/10.1140/epja/i2015-15170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15170-4

Keywords

Navigation