Skip to main content
Log in

A helium gas scintillator active target for photoreaction measurements

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 30 October 2015

Abstract

A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm3 at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N2 to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in 4He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergammon Press, Oxford, 1964).

  2. C. Eggler, C.M. Huddleston, Nucleonics 14, 34 (1956).

    Google Scholar 

  3. H. Wilkens et al., J. Phys. Conf. Series 160, 012043 (2009).

    Article  ADS  Google Scholar 

  4. G. Aad et al., Eur. Phys. J. C 70, 723 (2010).

    Article  ADS  Google Scholar 

  5. G.L. Morgan, R.L. Walter, Nucl. Instrum. Methods 58, 277 (1968).

    Article  ADS  Google Scholar 

  6. H. Davie, R.B. Galloway, Nucl. Instrum. Methods 108, 581 (1973).

    Article  ADS  Google Scholar 

  7. L. Drigo et al., Nucl. Instrum. Methods 166, 261 (1979).

    Article  ADS  Google Scholar 

  8. E.H. Thorndike, W.J. Shlaer, Rev. Sci. Instrum. 30, 838 (1959).

    Article  ADS  Google Scholar 

  9. I. Kazuo et al., Nucl. Instrum. Methods A 262, 323 (1987).

    Article  Google Scholar 

  10. D.N. McKinsey et al., Nucl. Instrum. Methods A 516, 475 (2004).

    Article  ADS  Google Scholar 

  11. S. Quaglioni et al., Phys. Rev. C 69, 044002 (2004).

    Article  ADS  Google Scholar 

  12. T. Kii et al., Nucl. Instrum. Methods A 552, 329 (2005).

    Article  ADS  Google Scholar 

  13. R. Al Jebali, PhD Thesis, University of Glasgow (2013) http://www.nuclear.gla.ac.uk/npe-theses/AlJebali_thesis.pdf.

  14. Y.M. Chan, A. Dalgarno, Proc. Phys. Soc. 85, 227 (1965).

    Article  ADS  Google Scholar 

  15. Eljen technology Ltd., http://www.eljentechnology.com.

  16. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).

    Article  ADS  Google Scholar 

  17. Geant-4 Physics Reference Manual Version 10.0, 6th Dec. 2013, http://geant4.cern.ch/support/userdocuments.shtml.

  18. Data sheet HOQ-310 fused quartz POL-O/424M-E, Heraeus, http://optics.heraeus-quarzglas.com/media/webmedia_local/datenbltter/O424me_HOQ.pdf .

  19. Type XP2262, Data Handbook Photomultipliers, Philips Components Ltd., Book PC04 (1990).

  20. E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic Chemistry (Academic Press, 2001) p. 1655, ISBN 0-12-352651-5.

  21. R. Brun, http://root.cern.ch/drupal/content/users-guide.

  22. J. Ahrens et al., Nucl. Phys. A 251, 479 (1975).

    Article  ADS  Google Scholar 

  23. F.K. Goward, J.J. Wilkins, Proc. R. Soc. London A 217, 376 (1953).

    Article  Google Scholar 

  24. J.-O. Adler et al., Nucl. Instrum. Methods A 715, 1 (2013).

    Article  ADS  Google Scholar 

  25. J.M. Vogt et al., Nucl. Instrum. Methods A 324, 198 (1993).

    Article  ADS  Google Scholar 

  26. M. Cronqvist et al., Nucl. Instrum. Methods A 317, 273 (1992).

    Article  ADS  Google Scholar 

  27. J.R.M. Annand et al., Nucl. Instrum. Methods A 400, 344 (1998).

    Article  ADS  Google Scholar 

  28. J.R.M. Annand et al., Nucl. Instrum. Methods A 262, 371 (1987).

    Article  ADS  Google Scholar 

  29. A.J.H. Reiter, PhD thesis, University of Glasgow 2004, http://www.nuclear.gla.ac.uk/npe-theses/Reiter_thesis.pdf.

  30. A. Reiter et al., Nucl. Instrum. Methods A 565, 753 (2006).

    Article  ADS  Google Scholar 

  31. M. Morhac et al., Nucl. Instrum. Methods A 401, 113 (1997).

    Article  ADS  Google Scholar 

  32. V. Ganenko, A measurement of the 4He(γ, n)3He reaction cross section asymmetry below pion photoproduction threshold, Experiment 10-02, MAX IV Laboratory, November 2010.

  33. J.R.M. Annand, Compton Scattering on the He Isotopes with an Active Target, Experiment A2-01/13, Mainz Microtron MAMI, October 2013, http://wwwa2.kph.uni-mainz.de/images/PAC2013/MAMI-A2-01-2013.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. M. Annand.

Additional information

Communicated by A. Jokinen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Jebali, R., Annand, J.R.M., Adler, JO. et al. A helium gas scintillator active target for photoreaction measurements. Eur. Phys. J. A 51, 123 (2015). https://doi.org/10.1140/epja/i2015-15123-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15123-y

Navigation