Skip to main content
Log in

α-α folding cluster model for α-radioactivity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The \( \alpha\)-decay half-lives are calculated for heavy and superheavy nuclei for \( 52\leq Z\leq112\) and \( 108\leq A\leq 285\) from the ground state to ground state \( \alpha\) transitions within the framework of the Wentzel-Kramers-Brillouin (WKB) method and the Bohr-Sommerfeld quantization. In the calculations, the \( \alpha\)-\( \alpha\) single folding cluster potential obtained with the folded integral of the \( \alpha\)-\( \alpha\) potential with the \( \alpha\) -cluster density distributions is used in order to model the nuclear interaction between the \( \alpha\) -particle and core nucleus. While the results show very good agreement with the experimental ones in the heavy-nuclei region, especially for even-even nuclei, smaller values than the experimental ones are obtained for superheavy nuclei. As both the density of the core and the interaction term in the folding integral include the \( \alpha\)-clustering effects and, in this way, all cluster effects are taken into account in the model, the results of calculations are more physical and reasonable than the calculations done in the other models. The present method could be applied to light nuclei with different types of nuclear densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Toth et al., Phys. Rev. Lett. 53, 1623 (1984)

    Article  ADS  Google Scholar 

  2. J. Wauters et al., Phys. Rev. Lett. 72, 1329 (1994)

    Article  ADS  Google Scholar 

  3. S. Hofmann et al., Eur. Phys. J. A 10, 5 (2001)

    Article  ADS  Google Scholar 

  4. Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006)

    Article  ADS  Google Scholar 

  5. Yu.Ts. Oganessian et al., Phys. Rev. C 70, 064609 (2004)

    Article  ADS  Google Scholar 

  6. M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006)

    Article  ADS  Google Scholar 

  7. A. Zdeb, M. Warda, K. Pomorski, Acta Phys. Pol. B 45, 303 (2014)

    Article  Google Scholar 

  8. K.P. Santhosh, B. Priyanka, J. Phys. G: Nucl. Part. Phys. 39, 085106 (2012)

    Article  ADS  Google Scholar 

  9. K.P. Santhosh, B. Priyanka, Phys. Rev. C 89, 064604 (2014)

    Article  ADS  Google Scholar 

  10. K.P. Santhosh, B. Priyanka, Phys. Rev. C 90, 054614 (2014)

    Article  ADS  Google Scholar 

  11. K.P. Santhosh, I. Sukumaran, B. Priyanka, Nucl. Phys. A 935, 28 (2015)

    Article  Google Scholar 

  12. M. Ismail, A. Adel, Phys. Rev. C 90, 064624 (2014)

    Article  ADS  Google Scholar 

  13. M. Ismail, A. Adel, Phys. Rev. C 91, 014322 (2015)

    Article  Google Scholar 

  14. S. Guo, X. Bao, Y. Gao, J. Li, H. Zhang, Nucl. Phys. A 934, 110 (2015)

    Article  Google Scholar 

  15. V.Yu. Denisov, A.A. Khudenko, Phys. Rev. C 79, 054614 (2009)

    Article  ADS  Google Scholar 

  16. V.Yu. Denisov, A.A. Khudenko, Phys. Rev. C 80, 034603 (2009)

    Article  ADS  Google Scholar 

  17. K.P. Santhosh, S. Sahadevan, J.G. Joseph, Nucl. Phys. A 850, 34 (2011)

    Article  ADS  Google Scholar 

  18. K.P. Santhosh, J.G. Joseph, B. Priyanka, S. Sahadevan, J. Phys. G: Nucl. Part. Phys. 38, 075101 (2011)

    Article  ADS  Google Scholar 

  19. K.P. Santhosh, J.G. Joseph, B. Priyanka, Nucl. Phys. A 877, 1 (2012)

    Article  ADS  Google Scholar 

  20. F.R. Xu et al., J. Phys.: Conf. Ser. 436, 1 (2013)

    Google Scholar 

  21. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Rom. J. Phys. 58, 1157 (2013)

    Google Scholar 

  22. K.P. Santhosh, B. Priyanka, M.S. Unnikrishnan, AIP Conf. Proc. 1524, 135 (2013)

    Article  ADS  Google Scholar 

  23. M. Ismail, A. Adel, Phys. Rev. C 89, 034617 (2014)

    Article  ADS  Google Scholar 

  24. V.Yu. Denisov, Phys. Rev. C 88, 044608 (2013)

    Article  ADS  Google Scholar 

  25. A. Coban, O. Bayrak, A. Soylu, I. Boztosun, Phys. Rev. C 85, 044324 (2012)

    Article  ADS  Google Scholar 

  26. Y. Qian, Z. Ren, J. Phys. G: Nucl. Part. Phys. 39, 015103 (2012)

    Article  ADS  Google Scholar 

  27. D. Ni, Z. Ren, Few-Body Syst. 54, 1413 (2013)

    Article  ADS  Google Scholar 

  28. G. Gamow, Z. Phys. 51, 204 (1928)

    Article  ADS  MATH  Google Scholar 

  29. S.A. Gurvitz, G. Kalbermann, Phys. Rev. Lett. 59, 262 (1987)

    Article  ADS  Google Scholar 

  30. B. Buck, J.C. Johnston, A.C. Merchant, S.M. Perez, Phys. Rev. C 53, 2841 (1996)

    Article  ADS  Google Scholar 

  31. Buck et al., Phys. Rev. Lett. 65, 2975 (1990)

    Article  ADS  Google Scholar 

  32. Buck et al., Phys. Rev. Lett. 76, 380 (1996)

    Article  ADS  Google Scholar 

  33. C. Xu, Z. Ren, Phys. Rev. C 69, 024614 (2004)

    Article  ADS  Google Scholar 

  34. Z.Z. Ren, C. Xu, Z. Wang, Phys. Rev. C 70, 034304 (2004)

    Article  ADS  Google Scholar 

  35. C. Xu, Z. Ren, Nucl. Phys. A 753, 174 (2005)

    Article  ADS  Google Scholar 

  36. F.R. Xu, J.C. Pei, Phys. Lett. B 642, 322 (2006)

    Article  ADS  Google Scholar 

  37. J.C. Pei, F.R. Xu, Phys. Lett. B 650, 224 (2007)

    Article  ADS  Google Scholar 

  38. D. Ni, Z. Ren, J. Phys. G: Nucl. Part. Phys. 37, 035104 (2010)

    Article  ADS  Google Scholar 

  39. D. Ni, Z. Ren, J. Phys. G: Nucl. Part. Phys. 37, 105107 (2010)

    Article  ADS  Google Scholar 

  40. D. Ni, Z. Ren, Nucl. Phys. A 828, 348 (2009)

    Article  ADS  Google Scholar 

  41. D. Ni, Z. Ren, Phys. Rev. C 82, 024311 (2010)

    Article  ADS  Google Scholar 

  42. D. Ni, Z. Ren, Z Phys. Rev. C 80, 051303 (2009)

    Article  ADS  Google Scholar 

  43. D. Ni, Z. Ren, Z Phys. Rev. C 81, 064318 (2010)

    Article  ADS  Google Scholar 

  44. M.N.A. Abdullah et al., Phys. Lett. B 571, 45 (2003)

    Article  ADS  Google Scholar 

  45. M.A. Hassanain et al., Phys. Rev. C 77, 034601 (2008)

    Article  ADS  Google Scholar 

  46. G.F. Bertsch, J. Borysowicz, H. Mcmanus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  47. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  48. B. Buck, H. Friedrich, C. Wheathly, Nucl. Phys. A 275, 246 (1977)

    Article  ADS  Google Scholar 

  49. T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely, M. Herman, A.V. Ignatyuk, S. Kailas, A. Koning, P. Oblozinsky, V. Plujko, P. Young, Handbook for calculations of nuclear reaction data, RIPL-2. IAEA-TECDOC-1506 (IAEA, Vienna, 2006), available online at http://www-nds.iaea.org/RIPL-2/

  50. J.D. Walecka, Theoretical Nuclear Physics and Subnuclear Physics (Oxford University Press, Oxford, 1995)

  51. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (World Scientific, Singapore, 1998)

  52. F. Michel, Phys. Lett. B 60, 229 (1976)

    Article  ADS  Google Scholar 

  53. M. El-Azab Farid, Z.M.M. Mahmoud, G.S. Hassan, Phys. Rev. C 64, 014310 (2001)

    Article  ADS  Google Scholar 

  54. M. Karakoc, I. Boztosun, Phys. Rev. C 73, 047601 (2006)

    Article  ADS  Google Scholar 

  55. A.M. Kobos, B.A. Brown, P.E. Hodgson, G.R. Satchler, A. Budzanowski, Nucl. Phys. A 384, 65 (1982)

    Article  ADS  Google Scholar 

  56. M. El-Azab Farid, Z.M.M. Mahmoud, G.S. Hassan, Nucl. Phys. A 691, 671 (2001)

    Article  ADS  Google Scholar 

  57. K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Academic Press, New York, 1977)

  58. B. Buck, A.C. Merchant, S.M. Perez, At. Data Nucl. Data Tables 54, 53 (1993)

    Article  ADS  Google Scholar 

  59. C. Xu, Z. Ren, Phys. Rev. C 68, 034319 (2003)

    Article  ADS  Google Scholar 

  60. P.E. Hodgson, E. Bêták, Phys. Rep. 374, 1 (2003)

    Article  ADS  Google Scholar 

  61. V.Yu. Denisov, A.A. Khudenko, At. Data Nucl. Data Tables 95, 815 (2009)

    Article  ADS  Google Scholar 

  62. J.C. Pei, F.R. Xu, P.D. Stevenson, Phys. Rev. C 71, 034302 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bayrak.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soylu, A., Bayrak, O. α-α folding cluster model for α-radioactivity. Eur. Phys. J. A 51, 46 (2015). https://doi.org/10.1140/epja/i2015-15046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15046-7

Keywords

Navigation