Skip to main content
Log in

Mass spectra of four-quark states in the hidden charm sector

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Masses of the low-lying four-quark states in the hidden charm sector ( \( cq\bar{c}\bar{q}; q\in u,d\) are calculated within the framework of a non-relativistic quark model. The four-body system is considered as two two-body systems such as diquark-antidiquark ( \( Qq\) - \( \bar{Q}\) \( \bar{q}\) and quark-antiquark-quark-antiquark ( \( Q\bar{q}\) -\( \bar{Q}\) q molecular-like four-quark states. Here, the Cornell-type potential has been used for describing the two-body interactions among Q -q , \( \bar{Q}\) -\( \bar{q}\) , Q -\( \bar{q}\) , Qq - \( \bar{Q}\bar{q}\) and Q \( \bar{q}\) -\( \bar{Q}\) q , with appropriate string tensions. Our present analysis suggests the following exotic states: X(3823) , Z c(3900) , X(3915) , Z c(4025) , \( \psi\)(4040) , Z 1(4050) and X(4160) as Q \( \bar{q}\) -\( \bar{Q}\) q molecular-like four-quark states, while Z c(3885) , X(3940) and Y(4140) as the diquark-antidiquark four-quark states. We have been able to assign the JPC values for many of the recently observed exotic states according to their structure. Apart from this, we have identified the charged state Z(4430) recently confirmed by LHCb as the first radial excitation of Zc(3885) with G = + 1 and Y(4360) state as the first radial excitation of Y(4008) with G = - 1 and the state \( \psi(4415)\) as the first radial excitation of the \( \psi(4040)\) state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belle Collaboration (Z.Q. Liu et al.), Phys. Rev. Lett. 110, 252002 (2013)

    Article  Google Scholar 

  2. The BESIII Collaboration (M. Ablikim et al.), Phys. Rev. Lett. 110, 252001 (2013)

    Article  Google Scholar 

  3. CDF Collaboration (A. Abulencia et al.), Phys. Rev. Lett. 98, 132002 (2007) hep-ex/0612053

    Article  Google Scholar 

  4. CMS Collaboration (S. Chatrchyan et al.), JHEP 04, 154 (2013) arXiv:1302.3968 [hep-ex]

    ADS  Google Scholar 

  5. C. Bignamini, B. Grinstein, F. Piccinini, A.D. Polosa, C. Sabelli, Phys. Rev. Lett. 103, 162001 (2009) arXiv:0906.0882 [hep-ph]

    Article  ADS  Google Scholar 

  6. C. Bignamini, B. Grinstein, F. Piccinini, A.D. Polosa, V. Riquer, C. Sabelli, Phys. Lett. B 684, 228 (2010) arXiv:0912.5064 [hep-ph]

    Article  ADS  Google Scholar 

  7. R.L. Jaffe, F. Willczek, Phys. Rev. Lett. 91, 232003 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. R.L. Jaffe, Phys. Rev. D 15, 281 (1977)

    Article  ADS  Google Scholar 

  9. R.L. Jaffe, Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  10. G. 't Hooft, G. Isidori, L. Maiani, A.D. Polosa, V. Riquer, Phys. Lett. B 662, 424 (2008)

    Article  ADS  Google Scholar 

  11. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. Lett. 93, 212002 (2004)

    Article  ADS  Google Scholar 

  12. D. Black, A. Fariborz, J. Schechter, Phys. Rev. D 61, 074001 (2000)

    Article  ADS  Google Scholar 

  13. J.D. Weinstein, N. Isgur, Phys. Rev. D 27, 588 (1983)

    Article  ADS  Google Scholar 

  14. J.D. Weinstein, N. Isgur, Phys. Rev. D 41, 2236 (1990)

    Article  ADS  Google Scholar 

  15. M.B. Voloshin, L.B. Okun, JETP Lett. 23, 333 (1976)

    ADS  Google Scholar 

  16. Youchang Yanga, Jialun Ping, arXiv:1004.2444

  17. Cheuk-Yin Wong, Phys. Rev. C 79, 055202 (2004)

    Article  Google Scholar 

  18. Rui Zhang, Yi-Bing Ding, Xue-Qian Li, Philip R. Page, Phys. Rev. D 65, 096005 (2002)

    Article  ADS  Google Scholar 

  19. BELLE Collaboration (S.K. Choi et al.), Phys. Rev. Lett. 100, 142001 (2008)

    Article  Google Scholar 

  20. LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 112, 222002 (2014)

    Article  ADS  Google Scholar 

  21. J.M. Dias, F.S. Navarra, M. Nielsen, Phys. Rev. D 88, 016004 (2013)

    Article  ADS  Google Scholar 

  22. L. Maiani, V. Riquer, R. Faccini, F. Piccinini, A. Pilloni, A.D. Polosa, Phy. Rev. D 87, 111102(R) (2013)

    Article  ADS  Google Scholar 

  23. Hong-Wei Ke et al., Eur. Phys. J. C 73, 2561 (2013)

    Article  ADS  Google Scholar 

  24. W. Lucha, F. Shoberl, Int. J. Mod. Phys. C 10, (1999) arXiv:hep-ph[9811453]

    Article  Google Scholar 

  25. Bhavin Patel, P.C. Vinodkumar, J. Phys. G: Nucl. Part. Phys. 36, 035003 (2009)

    Article  ADS  Google Scholar 

  26. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 71, 014028 (2005) hep-ph/0412098

    Article  ADS  Google Scholar 

  27. Belle Collaboration (V. Bhardwaj et al.), Phys. Rev. Lett. 111, 032001 (2013) arXiv:1304.3975 [hep-ex]

    Article  ADS  Google Scholar 

  28. BESIII Collaboration (M. Ablikim et al.), Phys. Rev. Lett. 112, 022001 (2014)

    Article  ADS  Google Scholar 

  29. Belle Collaboration (S. Uehara et al.), Phys. Rev. Lett. 104, 092001 (2010)

    Article  ADS  Google Scholar 

  30. Belle Collaboration (P. Pakhlov et al.), Phys. Rev. Lett. 100, 202001 (2008)

    Article  Google Scholar 

  31. Belle Collaboration (C.Z. Yuan et al.), Phys. Rev. Lett. 99, 182004 (2007)

    Article  Google Scholar 

  32. BESIII Collaboration (M. Ablikim), arXiv:1308.2760

  33. Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)

    Article  Google Scholar 

  34. Belle Collaboration (R. Mizuk et al.), Phys. Rev. D 78, 072004 (2008)

    Article  Google Scholar 

  35. BABAR Collaboration (J.P. Lees), arXiv:1111.5919 [hep-ex]

  36. CDF Collaboration (T. Aaltonen et al.), Phys. Rev. Lett. 102, 242002 (2009)

    Article  Google Scholar 

  37. Belle Collaboration (X.L. Wang et al.), Phys. Rev. Lett. 99, 142002 (2007) arXiv:0707.3699v2 [hep-ex]

    Article  Google Scholar 

  38. BESIII Collaboration (M. Ablikim), arXiv:1309.1896

  39. A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. Lett. 38, 317 (1977)

    Article  ADS  Google Scholar 

  40. Tanja Branz, Thomas Gutsche, Valery E. Lyubovitskij, Phys. Rev. D 80, 054019 (2009)

    Article  ADS  Google Scholar 

  41. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 89, 11401 (2014) arXiv:1405.1551v2 [hep-ph]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Vinodkumar.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Shah, M. & Vinodkumar, P.C. Mass spectra of four-quark states in the hidden charm sector. Eur. Phys. J. A 50, 131 (2014). https://doi.org/10.1140/epja/i2014-14131-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14131-9

Keywords

Navigation