Skip to main content

Advertisement

Log in

Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the \( \pi^{-}\)/\( \pi^{+}\) ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the \( \pi^{-}\)/\( \pi^{+}\) ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the \( \pi^{-}\)/\( \pi^{+}\) ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more \( \pi^{-}\)/\( \pi^{+}\) data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/K 0 ratio, \( \eta\) meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  2. B.A. Li et al., J. Phys. Conf. Ser. 312, 042006 (2011)

    Article  ADS  Google Scholar 

  3. B. Tsang et al., Phys. Rev. C 86, 015803 (2012)

    Article  ADS  Google Scholar 

  4. J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

    Article  ADS  Google Scholar 

  5. L.W. Chen, in Proceedings of the 14th National Conference on Nuclear Structure in China (NSC2012) (World Scientific, Singapore, 2012) pp. 43--54, arXiv:1212.0284

  6. B.A. Li et al., J. Phys. Conf. Ser. 413, 012021 (2013) arXiv:1212.1178

    Article  ADS  Google Scholar 

  7. B.A. Li et al., Phys. Rev. C 71, 014608 (2005)

    Article  ADS  Google Scholar 

  8. Q. Li, Z. Li et al., J. Phys. G: Nucl. Part. Phys. 31, 1359 (2005)

    Article  ADS  Google Scholar 

  9. G. Ferini et al., Phys. Rev. Lett. 97, 202301 (2006)

    Article  ADS  Google Scholar 

  10. B.A. Li, Phys. Rev. Lett. 88, 192701 (2002)

    Article  ADS  Google Scholar 

  11. P. Russotto et al., Phys. Lett. B 697, 471 (2011)

    Article  ADS  Google Scholar 

  12. G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 650, 344 (2007)

    Article  ADS  Google Scholar 

  13. L.W. Chen, C.M. Ki, B.A. Li, Nucl. Phys. A 729, 809 (2003)

    Article  ADS  Google Scholar 

  14. G.C. Yong, B.A. Li, L.W. Chen, X.C. Zhang, Phys. Rev. C 80, 044608 (2009)

    Article  ADS  Google Scholar 

  15. Q. Li, Z. Li, E. Zhao, R.K. Gupta, Phys. Rev. C 71, 054907 (2005)

    Article  ADS  Google Scholar 

  16. G.C. Yong, B.A Li, Phys. Let. B 723, 388 (2013)

    Article  ADS  Google Scholar 

  17. G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 661, 82 (2008)

    Article  ADS  Google Scholar 

  18. Y.G. Ma et al., Phys. Rev. C 85, 024618 (2012)

    Article  ADS  Google Scholar 

  19. FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 781, 459 (2007)

    Article  ADS  Google Scholar 

  20. B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Phys. Rev. C 69, 011603 (2004)

    Article  ADS  Google Scholar 

  21. B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A 735, 563 (2004)

    Article  ADS  Google Scholar 

  22. Z.G. Xiao et al., Phys. Rev. Lett. 102, 062502 (2009)

    Article  ADS  Google Scholar 

  23. Z.G. Xiao et al., Sci. Sin. Phys. Mech. Astron. 41, 439 (2011)

    Article  Google Scholar 

  24. Z.Q. Feng, G.M. Jin, Phys. Lett. B 683, 140 (2010)

    Article  ADS  Google Scholar 

  25. W.J. Xie et al., Phys. Lett. B 718, 1510 (2013)

    Article  ADS  Google Scholar 

  26. J. Xu, C.M. Ko, Y. Oh, Phys. Rev. C 81, 024910 (2010)

    Article  ADS  Google Scholar 

  27. G.C. Yong, Eur. Phys. J. A 46, 399 (2010)

    Article  ADS  Google Scholar 

  28. J. Xu, L.W. Chen, C.K. Ko, B.A. Li, Y.G. Ma, Phys. Rev. C 87, 067601 (2013)

    Article  ADS  Google Scholar 

  29. C. Xu, A. Li, B.A. Li, Phys. Rev. C 81, 064612 (2010)

    Article  ADS  Google Scholar 

  30. W. Zuo, I. Bombaci, U. Lombardo, contribution to this Topical Issue

  31. C. Xu, A. Li, B.A. Li, J. Phys.: Conf. Ser. 420, 012190 (2013)

    Google Scholar 

  32. H.K. Lee, Mannque Rho, contribution to this Topical Issue

  33. L.W. Chen et al., Phys. Rev. C 80, 014322 (2009)

    Article  ADS  Google Scholar 

  34. L.W. Chen, Sci. China Phys. Mech. Astron. 54, s124 (2011) arXiv:1101.2384

    Article  ADS  Google Scholar 

  35. W.Z. Jiang, B.A. Li, Phys. Rev. C 80, 044322 (2009)

    Article  ADS  Google Scholar 

  36. B.A. Li, Nucl. Phys. A 708, 365 (2002)

    Article  ADS  Google Scholar 

  37. H. Müller, B.D. Serot, Phys. Rev. C 52, 2072 (1995)

    Article  ADS  Google Scholar 

  38. B.A. Li, C.M. Ko, Nucl. Phys. A 618, 498 (1997)

    Article  ADS  Google Scholar 

  39. H.S. Xu et al., Phys. Rev. Lett. 85, 716 (2000)

    Article  ADS  Google Scholar 

  40. B.A. Li et al., Phys. Rev. C 67, 017601 (2003)

    Article  ADS  Google Scholar 

  41. G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, Nucl. Phys. A 762, 147 (2005)

    Article  ADS  Google Scholar 

  42. M.D. Cozma, Phys. Lett. B 700, 139 (2011)

    Article  ADS  Google Scholar 

  43. W. Benenson et al., Phys. Rev. Lett. 43, 683 (1979)

    Article  ADS  Google Scholar 

  44. S. Nagamiya et al., Phys. Rev. C 24, 971 (1981)

    Article  ADS  Google Scholar 

  45. J. Harris et al., Phys. Lett. B 153, 377 (1985)

    Article  ADS  Google Scholar 

  46. R. Stock, Phys. Rep. 135, 259 (1986)

    Article  ADS  Google Scholar 

  47. G.F. Bertsch, Nature 283, 280 (1980)

    Article  ADS  Google Scholar 

  48. H.R. Jaqaman, A.Z. Mekjian, L. Zamick, Phys. Rev. C 27, 2782 (1983)

    Article  ADS  Google Scholar 

  49. H.R. Jaqaman, A.Z. Mekjian, L. Zamick, Phys. Rev. C 29, 2067 (1984)

    Article  ADS  Google Scholar 

  50. H.R. Jaqaman, Phys. Rev. C 39, 169 (1988)

    Article  ADS  Google Scholar 

  51. C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010)

    Article  ADS  Google Scholar 

  52. C. Xu, B.A. Li, L.W. Chen, C.M. Ko, Nucl. Phys. A 865, 1 (2011)

    Article  ADS  Google Scholar 

  53. R. Chen, B.J. Cai, L.W. Chen, B.A. Li, X.H. Li, C. Xu, Phys. Rev. C 85, 024305 (2012)

    Article  ADS  Google Scholar 

  54. L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005)

    Article  ADS  Google Scholar 

  55. A. Akmal et al., Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  56. C. Hartnack et al., Eur. Phys. J. A 1, 151 (1998)

    Article  ADS  Google Scholar 

  57. D.H. Wen et al., Phys. Rev. Lett. 103, 211102 (2009)

    Article  ADS  Google Scholar 

  58. M. Zhang et al., Phys. Rev. C 80, 034616 (2009)

    Article  ADS  Google Scholar 

  59. M. Zhang et al., Phys. Rev. C 82, 044602 (2010)

    Article  ADS  Google Scholar 

  60. B. Hong and the FOPI Collaboration, Phys. Rev. C 66, 034901 (2002)

    Article  ADS  Google Scholar 

  61. J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55, 2661 (1985)

    Article  ADS  Google Scholar 

  62. KaoS Collaboration (C. Sturm et al.), Phys. Rev. Lett. 86, 39 (2001)

    Article  ADS  Google Scholar 

  63. Ch. Hartnack, H. Oeschler et al., Phys. Rev. Lett. 96, 012302 (2006)

    Article  ADS  Google Scholar 

  64. C. Fuchs et al., Phys. Rev. Lett. 86, 1974 (2001)

    Article  ADS  Google Scholar 

  65. X. Lopez, Y.J. Kim et al., Phys. Rev. C 75, 011901(R) (2007)

    Article  ADS  Google Scholar 

  66. Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)

    Article  Google Scholar 

  67. Gy. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A 552, 549 (1993)

    Article  ADS  Google Scholar 

  68. M. Thomere, C. Hartnack, G. Wolf, J. Aichelin, Phys. Rev. C 75, 064902 (2007)

    Article  ADS  Google Scholar 

  69. A. Depaoli, K. Niita, W. Cassing, U. Mosel, C.M. Ko, Phys. Lett. B 219, 194 (1989)

    Article  ADS  Google Scholar 

  70. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)

    Article  ADS  Google Scholar 

  71. L. Shi, P. Danielewicz, Europhys. Lett. 49, 34 (2000)

    Article  ADS  Google Scholar 

  72. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)

    Article  ADS  Google Scholar 

  73. H. Nifenecker, J.A. Pinston, Annu. Rev. Nucl. Part. Sci. 40, 113 (1990)

    Article  ADS  Google Scholar 

  74. W. Cassing, V. Metag, U. Mosel, K. Niita, Phys. Rep. 188, 363 (1990)

    Article  ADS  Google Scholar 

  75. B.A. Remington, M. Blann, G.F. Bertsch, Phys. Rev. Lett. 57, 2909 (1986)

    Article  ADS  Google Scholar 

  76. C.M. Ko, G.F. Bertsch, J. Aichelin, Phys. Rev. C 31, 2324(R) (1985)

    Article  ADS  Google Scholar 

  77. W. Cassing, T. Biro, U. Mosel, M. Tohyama, W. Bauer, Phys. Lett. B 181, 217 (1986)

    Article  ADS  Google Scholar 

  78. W. Bauer, G.F. Bertsch, W. Cassing, U. Mosel, Phys. Rev. C 34, 2127 (1986)

    Article  ADS  Google Scholar 

  79. J. Stevenson et al., Phys. Rev. Lett. 57, 555 (1986)

    Article  ADS  Google Scholar 

  80. G.C. Yong, W. Zuo, X.C. Zhang, Phys. Lett. B 705, 240 (2011)

    Article  ADS  Google Scholar 

  81. H. Nifenecker, J.P. Bondorf, Nucl. Phys. A 442, 478 (1985)

    Article  ADS  Google Scholar 

  82. K. Nakayama, G.F. Bertsch, Phys. Rev. C 34, 2190 (1986)

    Article  ADS  Google Scholar 

  83. M. Schäffer, T.S. Biro, W. Cassing, U. Mosel, H. Nifenecker, J.A. Pinstan, Z. Phys. A 339, 391 (1991)

    Article  ADS  Google Scholar 

  84. N. Gan et al., Phys. Rev. C 49, 298 (1994)

    Article  ADS  Google Scholar 

  85. R.G.E. Timmermans, T.D. Penninga, B.F. Gibson, M.K. Liou, Phys. Rev. C 73, 034006 (2006)

    Article  ADS  Google Scholar 

  86. P. Russotto et al., J. Phys. Conf. Ser. 420, 012092 (2013)

    Article  ADS  Google Scholar 

  87. P. Russotto, M.D. Cozma, contribution to this Topical Issue

  88. W. Trautmann, contribution to this Topical Issue

  89. T. Kobayashi et al., Nucl. Instrum. Methods B 317, 294 (2013)

    Article  ADS  Google Scholar 

  90. B. Hong, contribution to this Topical Issue

  91. J.W. Xia et al., Nucl. Instrum. Methods A 488, 11 (2002)

    Article  ADS  Google Scholar 

  92. Z.G. Xiao et al., J. Phys. G: Nucl. Part. Phys. 36, 064040 (2009)

    Article  ADS  Google Scholar 

  93. M. Zhang et al., Chin. Phys. C 34, 1100 (2010)

    Article  ADS  Google Scholar 

  94. C.C. Guo et al., Sci. China A 55, 252 (2012)

    Article  Google Scholar 

  95. L. Ou et al., Phys. Rev. C 78, 044609 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Xiao.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Àngels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, ZG., Yong, GC., Chen, LW. et al. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions. Eur. Phys. J. A 50, 37 (2014). https://doi.org/10.1140/epja/i2014-14037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14037-6

Keywords

Navigation