Skip to main content
Log in

MINOS: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

MINOS is a new apparatus dedicated to in-beam nuclear structure experiments with low-intensity exotic beams in inverse kinematics at intermediate energies above 150MeV/nucleon. The device is composed of a thick liquid-hydrogen target coupled to a compact time projection chamber (TPC) serving as a vertex tracker. Either used for in-beam gamma spectroscopy of bound excited states or invariant-mass spectroscopy of unbound states, MINOS aims at improving the luminosity by a very significant factor compared to standard solid-target material experiments while improving experimental resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Detraz et al., Phys. Rev. C 19, 164 (1979).

    Article  ADS  Google Scholar 

  2. T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).

    Article  ADS  Google Scholar 

  3. B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).

    Article  ADS  Google Scholar 

  4. A. Gade et al., Phys. Rev. Lett. 99, 072502 (2007).

    Article  ADS  Google Scholar 

  5. G. Hagen et al., Phys. Rev. Lett. 109, 162503 (2012).

    Article  ADS  Google Scholar 

  6. D. Steppenbeck et al., Nature 502, 207 (2013).

    Article  ADS  Google Scholar 

  7. T. Otsuka et al., Phys. Rev. Lett. 105, 212502 (2010).

    Article  Google Scholar 

  8. J. Dobaczewski et al., Phys. Rev. Lett. 72, 981 (1994).

    Article  ADS  Google Scholar 

  9. T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).

    Article  ADS  Google Scholar 

  10. P. Doornenbal et al., Phys. Rev. Lett. 103, 032501 (2009).

    Article  ADS  Google Scholar 

  11. S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2011).

    Article  ADS  Google Scholar 

  12. A. Obertelli, Proceedings in French-Japanese Symposium on Nuclear Structure Problems, edited by H. Otsu, T. Motobayashi, P. Roussel-Chomaz, T. Otsuka (World Scientific, 2012).

  13. A. Obertelli, T. Uesaka, Eur. Phys. J. A 47, 105 (2011).

    Article  ADS  Google Scholar 

  14. C. Demonchy et al., Nucl. Instrum. Methods Phys. Res. A 573, 145 (2007).

    Article  ADS  Google Scholar 

  15. C. Demonchy et al., Nucl. Instrum. Methods Phys. Res. A 583, 341 (2007).

    Article  ADS  Google Scholar 

  16. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).

    Article  ADS  Google Scholar 

  17. A. Boudard et al., Phys. Rev. C 66, 044615 (2002).

    Article  ADS  Google Scholar 

  18. A. Boudard et al., Phys. Rev. C 87, 014606 (2013).

    Article  ADS  Google Scholar 

  19. C. Louchart et al., Phys. Rev. C 83, 011601(R) (2011).

    Article  ADS  Google Scholar 

  20. L. Audirac et al., Phys. Rev. C 88, 041602(R) (2013).

    Article  ADS  Google Scholar 

  21. N.S. Chant, code THREEDEE, University of Maryland, unpublished (1998).

  22. D.C. Arogancia et al., Nucl. Instrum. Methods Phys. Res. A 602, 403 (2009).

    Article  ADS  Google Scholar 

  23. S.F. Biagi, Nucl. Instrum. Methods Phys. Res. A 241, 234 (1999).

    Article  ADS  Google Scholar 

  24. S. Takeuchi, in RIKEN Accelerator Progress Report (RIKEN, 2005) col. 36, p. 148.

  25. T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B 317, 294 (2013).

    Article  ADS  Google Scholar 

  26. T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012).

    Article  Google Scholar 

  27. C. Louchart et al., Nucl. Instrum. Methods Phys. Res. A 736, 81 (2014).

    Article  ADS  Google Scholar 

  28. A. Gillibert et al., Eur. Phys. J. A 49, 155 (2013).

    Article  ADS  Google Scholar 

  29. ASME Boiler and pressure Vessel, http://go.asme.org/bpvc13.

  30. S.P. Timoshenko, J.M. Gere, Theory of elastic stability (Mc. Graw-Hill, 1961).

  31. I. Giomataris et al., Nucl. Instrum. Methods Phys. Res. A 376, 29 (1996).

    Article  ADS  Google Scholar 

  32. I. Giomataris et al., Nucl. Instrum. Methods Phys. Res. A 560, 405 (2006).

    Article  ADS  Google Scholar 

  33. L. Fabbietti et al., Nucl. Instrum. Methods Phys. Res. A 628, 204 (2011).

    Article  ADS  Google Scholar 

  34. G. Charpak, I. Giomataris, Ph. Rebourgeard, J.P. Robert, Nucl. Instrum. Methods Phys. Res. A 376, 29 (1996).

    Article  ADS  Google Scholar 

  35. P. Colas, I. Giommataris, V. Lepeltier, Nucl. Instrum. Methods Phys. Res. A 534, 226 (2004).

    Article  ADS  Google Scholar 

  36. A. Delbart et al., Nucl. Instrum. Methods Phys. Res. A 623, 105 (2010).

    Article  ADS  Google Scholar 

  37. N. Abgrall et al., Nucl. Instrum. Methods Phys. Res. A 637, 25 (2011).

    Article  ADS  Google Scholar 

  38. CLAS12 Technical Design Report, v5.1, Jefferson Lab (2008).

  39. G. Charles, PhD thesis at CEA Saclay, Paris XI university (2013).

  40. S. Anvar, in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2011) pp. 745--749.

  41. P. Baron et al., IEEE Trans. Nucl. Sci. 55, 1744 (2008).

    Article  ADS  Google Scholar 

  42. S. Procureur, Mod. Phys. Lett. A 28, 1340024 (2013).

    Article  ADS  Google Scholar 

  43. C. Glattfelder, Mars MX2 User Manual, Enclustra Gmbh (online), available at: http://www.enclustra.com.

  44. D. Calvet, paper presented at IEEE NSS/MIC 2013, Seoul, Korea, October 27th-November 2nd 2013.

  45. S. Anvar, in IEEE Nuclear Science Symposium Conference Record, NSS '08 (IEEE, 2008) pp. 3558--3561.

  46. M. Henning, IEEE Internet Comput. 8, 66 (2004).

    Article  Google Scholar 

  47. F. Château, S. Anvar, in Proceedings of the 15th IEEE-NPSS RealTime Conference, 2007 (IEEE, 2007) pp. 1-6.

  48. H. Baba, in IEEE Nuclear Science Symposium Conference Record, NSS '08 (IEEE, 2008) pp. 1384--1386.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Obertelli.

Additional information

Communicated by A. Alamanos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obertelli, A., Delbart, A., Anvar, S. et al. MINOS: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei. Eur. Phys. J. A 50, 8 (2014). https://doi.org/10.1140/epja/i2014-14008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14008-y

Keywords

Navigation