Skip to main content

Advertisement

Log in

Fusion of 60Ni + 100Mo near and below the Coulomb barrier

Multi-phonon and transfer couplings down to the hindrance region

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The fusion excitation function of 60 Ni + 100 Mo has been measured from above the Coulomb barrier down to a cross section around 2 μb, looking for coupling and hindrance effects in this soft medium-mass system with positive Q-values for several neutron transfer channels. A comparison is made with previous results for 64 Ni + 100 Mo where no Q > 0 transfer channels exist and the hindrance effect is quite clear. The two excitation functions are very similar, as well as the corresponding logarithmic derivatives showing analogous saturations below the barrier. It appears that transfer couplings to Q > 0 channels seem to play a marginal role near and below the barrier for 60 Ni + 100 Mo , even if measurements of cross sections lower than 1 μb would be needed also for this system. Coupled-channels calculations confirm these observations and indicate that multi-phonon excitations dominate the fusion dynamics in the whole measured energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Montagnoli, A.M. Stefanini, EPJ Web of Conferences 17, 05001 (2011).

    Article  Google Scholar 

  2. H. Esbensen, Phys. Rev. C 72, 054607 (2005).

    Article  ADS  Google Scholar 

  3. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998).

    Article  ADS  Google Scholar 

  4. N. Rowley, G.R. Satchler, P.H. Stelson, Phys. Lett. B 254, 25 (1991).

    Article  ADS  Google Scholar 

  5. A.M. Stefanini et al., Phys. Rev. Lett. 74, 864 (1995).

    Article  ADS  Google Scholar 

  6. K.-H. Schmidt, W. Morawek, Rep. Prog. Phys. 54, 949 (1991).

    Article  ADS  Google Scholar 

  7. W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994).

    Article  ADS  Google Scholar 

  8. J.G. Keller et al., Nucl. Phys. A 452, 173 (1986).

    Article  ADS  Google Scholar 

  9. C.L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002).

    Article  ADS  Google Scholar 

  10. A.M. Stefanini et al., Phys. Rev.C 76, 014610 (2007).

    Article  ADS  Google Scholar 

  11. A.M. Stefanini et al., Phys. Rev.C 73, 034606 (2006).

    Article  ADS  Google Scholar 

  12. H. Timmers et al., Phys. Lett. B 399, 35 (1997).

    Article  ADS  Google Scholar 

  13. H. Timmers et al., Nucl. Phys. A 633, 421 (1998).

    Article  ADS  Google Scholar 

  14. Z. Kohley et al., Phys. Rev. Lett. 107, 202701 (2011).

    Article  ADS  Google Scholar 

  15. W.S. Freeman et al., Phys. Rev. Lett. 50, 1563 (1983).

    Article  ADS  Google Scholar 

  16. K.T. Lesko et al., Phys. Rev. C 34, 2155 (1986).

    Article  ADS  Google Scholar 

  17. F.L.H. Wolfs, Phys. Rev. C 36, 1379 (1987).

    Article  ADS  Google Scholar 

  18. J.J. Kolata et al., Phys. Rev. C 85, 054603 (2012).

    Article  ADS  Google Scholar 

  19. C.L. Jiang et al., Phys. Rev. C 71, 044613 (2005).

    Article  ADS  Google Scholar 

  20. C.L. Jiang et al., Phys. Rev. C 81, 024611 (2010).

    Article  ADS  Google Scholar 

  21. F. Scarlassara et al., EPJ Web of Conferences 17, 05002 (2011).

    Article  Google Scholar 

  22. C.L. Jiang, H. Esbensen, B.B. Back, R.V.F. Janssens, K.E. Rehm, Phys. Rev. C 69, 014604 (2004).

    Article  ADS  Google Scholar 

  23. C.N. Davids, J.D. Larson, Nucl. Instrum. Methods Phys. Res. B 40/41, 1224 (1989).

    Article  ADS  Google Scholar 

  24. C.N. Davids, B.B. Back, K. Bindra, D.J. Henderson, W. Kutschera, T. Lauritsen, Y. Nagame, P. Sugathan, A.V. Ramayya, W.B. Walters, Nucl. Instrum Methods Phys. Res. B 70, 358 (1992).

    Article  ADS  Google Scholar 

  25. C.L. Jiang et al., Nucl. Instrum. Methods Phys. Res. A 554, 500 (2005).

    Article  ADS  Google Scholar 

  26. R.O. Sayer, Rev. Phys. Appl. 12, 1543 (1977).

    Article  Google Scholar 

  27. A. Gavron, Phys. Rev. C 21, 230 (1980).

    Article  ADS  Google Scholar 

  28. C.L. Jiang, C.N. Davids, ANL Phys. Div. Annual Rep. ANL-95/14 (1995) p. 74 (unpublished).

  29. K.E. Rehm, H. Esbensen, J. Gehring, B. Glagola, D. Henderson, W. Kutschera, M. Paul, F .Soramel, A.H. Wuosmaa, Phys. Lett B 317, 31 (1993).

    Article  ADS  Google Scholar 

  30. S. Mişicu, H. Esbensen, Phys. Rev. C 75, 034606 (2007).

    Article  ADS  Google Scholar 

  31. Ö. Akyüz, Å. Winther, Nuclear Structure and Heavy-Ion Physics, in Proceedings of the International School of Physics “Enrico Fermi”, Course LXXVII, Varenna, edited by R.A. Broglia, R.A. Ricci (North Holland, Amsterdam, 1981).

  32. G. Montagnoli et al., Phys. Rev. C 85, 024607 (2012).

    Article  ADS  Google Scholar 

  33. N. Rowley, K. Hagino, Nucl. Phys. A 834, 110c (2010).

    Article  ADS  Google Scholar 

  34. K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999).

    Article  ADS  MATH  Google Scholar 

  35. H. Esbensen, S. Mişicu, Phys. Rev. C 76, 054609 (2007).

    Article  ADS  Google Scholar 

  36. A. Diaz-Torres, D.J. Hinde, M. Dasgupta, G.J. Milburn, J.A. Tostevin, Phys. Rev. 78, 064604 (2008).

    Google Scholar 

  37. T. Ichikawa, K. Hagino, A. Iwamoto, Phys. Rev. Lett. 103, 202701 (2009).

    Article  ADS  Google Scholar 

  38. A.M. Stefanini et al., Phys. Rev. C 78, 044607 (2008).

    Article  ADS  Google Scholar 

  39. A.M. Stefanini et al., Phys. Lett. B 679, 95 (2009).

    Article  ADS  Google Scholar 

  40. S. Raman, C.W. Nestor, Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  41. T. Kibédi, R.H. Spear, At. Data Nucl. Data Tables 80, 35 (2002).

    Article  ADS  Google Scholar 

  42. K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, J.R. Leigh, Phys. Rev. Lett. 79, 2014 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Stefanini.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanini, A.M., Montagnoli, G., Scarlassara, F. et al. Fusion of 60Ni + 100Mo near and below the Coulomb barrier. Eur. Phys. J. A 49, 63 (2013). https://doi.org/10.1140/epja/i2013-13063-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13063-2

Keywords

Navigation