Skip to main content
Log in

Modeling astatine production in liquid lead-bismuth spallation targets

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Kugler, Hyperfine Interact. 129, 23 (2000)

    Article  ADS  Google Scholar 

  2. G.S. Bauer et al., J. Nucl. Mat. 296, 17 (2001)

    Article  ADS  Google Scholar 

  3. H. Abderrahim, P. Baeten, D. De Bruyn, J. Heyse, P. Schuurmans, J. Wagemans, Nucl. Phys. News 20, 24 (2010)

    Article  Google Scholar 

  4. L. Zanini, in International Conference on Nuclear Data for Science and Technology, edited by R.C. Haight (Melville, New York, 2005) p. 1525.

  5. Y. Tall, Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2008) p. 1069

  6. A. Fassò, A. Ferrari, J. Ranft, P.R. Sala, FLUKA: a multi-particle transport code, CERN-2005-10, INFN/TC_05/11 (2005)

  7. J.S. Hendricks, ``MCNPX EXTENSIONS VERSION 2.5.0'', Los Alamos National Laboratory Report LA-UR-05-2675 (2005)

  8. A. Boudard, J. Cugnon, S. Leray, C. Volant, Phys. Rev. C 66, 044615 (2002)

    Article  ADS  Google Scholar 

  9. A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998)

    Article  ADS  Google Scholar 

  10. H.W. Bertini, Phys. Rev. 131, 1801 (1963)

    Article  ADS  Google Scholar 

  11. L. Dresner, Oak Ridge report, Technical report, ORNL-TM-196, 1962

  12. A. Boudard, J. Cugnon, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, ICTP Trieste, Italy, 4-8 February 2008, edited by D. Filges, S. Leray, Y. Yariv, A. Mengoni, A. Stanculescu, G. Mank (IAEA INDC(NDS)-530, Vienna, 2008) p. 29, http://www-nds.iaea.org/reports-new/indc-reports/indc-nds/indc-nds-0530.pdf

  13. A. Kelic, M.V. Ricciardi, K.-H. Schmidt, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, ICTP Trieste, Italy, 4-8 February 2008, edited by D. Filges, S. Leray, Y. Yariv, A. Mengoni, A. Stanculescu, G. Mank (IAEA INDC(NDS)-530, Vienna, 2008) p. 181, http://www-nds.iaea.org/reports-new/indc-reports/indc-nds/indc-nds-0530.pdf

  14. FP6 Euratom project EUROTRANS/NUDATRA, EC contract number FI6W-CT-2004-516520

  15. http://www-nds.iaea.org/spallations

  16. S. Leray et al., J. Korean Phys. Soc. 59, 791 (2011)

    Article  Google Scholar 

  17. A. Boudard et al., Phys. Rev. C. 87, 014606 (2013)

    Article  ADS  Google Scholar 

  18. J.C. David, J.S. Hendricks, private communication

  19. Y. Tall, PhD Thesis, Université de Nantes, France (2008)

  20. A. Boudard, J. Cugnon, S. Leray, C. Volant, Nucl. Phys. A 740, 195 (2004)

    Article  ADS  Google Scholar 

  21. Th. Aoust, J. Cugnon, Phys. Rev. C 74, 064607 (2006)

    Article  ADS  Google Scholar 

  22. D.R.F. Cochran et al., Phys. Rev. D 6, 3085 (1972)

    Article  ADS  Google Scholar 

  23. C.M. Herbach et al., Nucl. Phys. A 765, 426 (2006)

    Article  ADS  Google Scholar 

  24. S. Leray et al., Nucl. Instrum. Methods Phys. Res. B 268, 581 (2010)

    Article  ADS  Google Scholar 

  25. G. Igo, B.D. Wilkins, Phys. Rev. 131, 1251 (1963)

    Article  ADS  Google Scholar 

  26. A. Ingemarsson et al., Nucl. Phys. A 676, 3 (2000)

    Article  ADS  Google Scholar 

  27. A. Ingemarsson et al., Nucl. Phys. A 696, 3 (2001)

    Article  ADS  Google Scholar 

  28. M. Dombsky et al., Phys. Rev. C 32, 253 (1985)

    Article  ADS  Google Scholar 

  29. P. Napolitani et al., Phys. Rev. C 76, 064609 (2007)

    Article  ADS  Google Scholar 

  30. http://www-nds.iaea.org/exfor/

  31. R.J. Charity, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, ICTP Trieste, Italy, 4-8 February 2008, edited by D. Filges, S. Leray, Y. Yariv, A. Mengoni, A. Stanculescu, G. Mank (IAEA INDC(NDS)-530, Vienna, 2008) p. 139, http://www-nds.iaea.org/reports-new/indc-reports/indc-nds/indc-nds-0530.pdf

  32. D. Mancusi, R.J. Charity, J. Cugnon, Phys. Rev. C 82, 084610 (2010)

    Article  ADS  Google Scholar 

  33. D. Mancusi, private communication

  34. N.E. Scott, J.W. Cobble, P.J. Daly, Nucl. Phys. A 119, 131 (1968)

    Article  ADS  Google Scholar 

  35. L. Zanini, in preparation

  36. S.G. Mashnik et al., J. Phys.: Conf. Ser. 41, 340 (2006)

    Article  ADS  Google Scholar 

  37. Y. Yariv, Z. Fraenkel, Phys. Rev. C 20, 2227 (1979)

    Article  ADS  Google Scholar 

  38. D. Schumann, private communication

  39. H. Bateman, Proc. Cambridge Philos. Soc.154231910

  40. M. Turrion et al., Nucl. Instrum. Methods Phys. Res. B 266, 4674 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. David.

Additional information

Communicated by M. Hjorth-Jensen

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, J.C., Boudard, A., Cugnon, J. et al. Modeling astatine production in liquid lead-bismuth spallation targets. Eur. Phys. J. A 49, 29 (2013). https://doi.org/10.1140/epja/i2013-13029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13029-4

Keywords

Navigation