Skip to main content
Log in

Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We analyse the proton Compton-scattering differential cross section for photon energies up to 325 MeV using Chiral Effective Field Theory (χEFT) and extract new values for the electric and magnetic polarisabilities of the proton. Our approach builds in the key physics in two different regimes: photon energies ωm π (“low energy”), and the higher energies where the Δ(1232) resonance plays a key role. The Compton amplitude is complete at N4LO, \(\mathcal{O}\left( {e^2 \delta ^4 } \right)\), in the low-energy region, and at NLO, \(\mathcal{O}\left( {e^2 \delta ^0 } \right)\), in the resonance region. Throughout, the Delta-pole graphs are dressed with π N loops and γNΔ vertex corrections. A statistically consistent database of proton Compton experiments is used to constrain the free parameters in our amplitude: the M1 γNΔ transition strength b 1 (which is fixed in the resonance region) and the polarisabilities α E1 and β M1 (which are fixed from data below 170 MeV). In order to obtain a reasonable fit, we find it necessary to add the spin polarisability γ M1M1 as a free parameter, even though it is, strictly speaking, predicted in χEFT at the order to which we work. We show that the fit is consistent with the Baldin sum rule, and then use that sum rule to constrain α E1 + β M1. In this way we obtain α E1 = [10.65 ± 0.35(stat) ± 0.2(Baldin) ± 0.3(theory)] × 10−4 fm3 and β M1 = [3.15 ∓ 0.35(state) ± 0.2(Baldin) ∓ 0.3()theory] × 10−4 fm3, with χ2 = 113.2 for 135 degrees of freedom. A detailed rationale for the theoretical uncertainties assigned to this result is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012).

    Article  ADS  Google Scholar 

  2. D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rep. 378, 99 (2003).

    Article  ADS  Google Scholar 

  3. M. Schumacher, Prog. Part. Nucl. Phys. 55, 567 (2005).

    Article  ADS  Google Scholar 

  4. C.L. Oxley, Phys. Rev. 110, 733 (1958).

    Article  ADS  Google Scholar 

  5. L.G. Hyman, R. Ely, D.H. Frisch, M.A. Wahlig, Phys. Rev. Lett. 3, 93 (1959).

    Article  ADS  Google Scholar 

  6. V.I. Gol’danskii et al., Sov. Phys. JETP 11, 1223 (1960).

    Google Scholar 

  7. G. Bernardini et al., Nuovo Cimento 18, 1203 (1960).

    Article  Google Scholar 

  8. G. Pugh et al., Phys. Rev. 105, 982 (1957) and references therein, MIT Summer study (1967) p. 555.

    Article  ADS  Google Scholar 

  9. P.S. Baranov et al., Phys. Lett. B 52, 122 (1974).

    Article  ADS  Google Scholar 

  10. P.S. Baranov et al., Sov. J. Nucl. Phys. 21, 355 (1975).

    Google Scholar 

  11. J.W. DeWire, M. Feldmann, V.L. Highland, R. Littauer, Phys. Rev. 124, 909 (1961).

    Article  ADS  Google Scholar 

  12. P.S. Baranov, L.I. Slovokhotov, G.A. Sokol, L.N. Shtarkov, Sov. Phys. JETP 23, 242 (1966).

    ADS  Google Scholar 

  13. P.S. Baranov et al., Sov. J. Nucl. Phys. 3, 791 (1966).

    Google Scholar 

  14. E.R. Gray, A.O. Hanson, Phys. Rev. 160, 1212 (1967).

    Article  ADS  Google Scholar 

  15. H. Genzel, M. Jung, R. Wedemeyer et al., Z. Phys. A 279, 399 (1976).

    Article  ADS  Google Scholar 

  16. S. Weinberg, Physica A 96, 327 (1979).

    Article  ADS  Google Scholar 

  17. J. Gasser, H. Leutwyler, Phys. Rep. 87, 77 (1982).

    Article  ADS  Google Scholar 

  18. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  19. E.E. Jenkins, A.V. Manohar, lectures at the Workshop on Effective Field Theories of the Standard Model, Dobogoko, Hungary, Aug 1991, in Dobogokoe 1991, Proceedings, Effective field theories of the standard model, pp. 113-137.

  20. E.E. Jenkins, A.V. Manohar, Phys. Lett. B 259, 353 (1991).

    Article  ADS  Google Scholar 

  21. V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).

    Article  ADS  Google Scholar 

  22. S. Scherer, Adv.. Nucl. Phys. 27, 277 (2003).

    Article  Google Scholar 

  23. V. Bernard, U.-G. Meißner, Annu. Rev. Nucl. Part. Sci. 57, 33 (2007).

    Article  ADS  Google Scholar 

  24. V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008).

    Article  ADS  Google Scholar 

  25. S. Scherer, M.R. Schindler, Quantum chromodynamics and chiral symmetry, in Lect. Notes Phys., Vol. 830 (Springer, 2012) pp. 1.

  26. V. Bernard, N. Kaiser, J. Kambor, U.-G. Meißner, Nucl. Phys. B 388, 315 (1992).

    Article  ADS  Google Scholar 

  27. V. Bernard, N. Kaiser, U.-G. Meißner, Phys. Rev. Lett. 67, 1515 (1991).

    Article  ADS  Google Scholar 

  28. D. Babusci, G. Giordano, G. Matone, Phys. Rev. C 57, 291 (1998).

    Article  ADS  Google Scholar 

  29. F.J. Federspiel, R.A. Eisenstein, M.A. Lucas et al., Phys. Rev. Lett. 67, 1511 (1991).

    Article  ADS  Google Scholar 

  30. A. Zieger, R. Van de Vyver, D. Christmann, A. De Graeve, C. Van den Abeele, B. Ziegler, Phys. Lett. B 278, 34 (1992).

    Article  ADS  Google Scholar 

  31. E.L. Hallin et al., Phys. Rev. C 48, 1497 (1993).

    Article  ADS  Google Scholar 

  32. B.E. MacGibbon, G. Garino, M.A. Lucas, A.M. Nathan, G. Feldman, B. Dolbilkin, Phys. Rev. C 52, 2097 (1995).

    Article  ADS  Google Scholar 

  33. V. Olmos de León et al., Eur. Phys. J. A 10, 207 (2001).

    Article  ADS  Google Scholar 

  34. C. Molinari et al., Phys. Lett. B 371, 181 (1996).

    Article  ADS  Google Scholar 

  35. J. Peise et al., Phys. Lett. B 384, 37 (1996).

    Article  ADS  Google Scholar 

  36. A. Hünger et al., Nucl. Phys. A 620, 385 (1997).

    Article  ADS  Google Scholar 

  37. F. Wissmann et al., Nucl. Phys. A 660, 232 (1999).

    Article  ADS  Google Scholar 

  38. S. Wolf et al., Eur. Phys. J. A 12, 231 (2001).

    Article  ADS  Google Scholar 

  39. M. Camen et al., Phys. Rev. C 65, 032202 (2002).

    Article  ADS  Google Scholar 

  40. G. Blanpied et al., Phys. Rev. C 64, 025203 (2001).

    Article  ADS  Google Scholar 

  41. R. Miskimen, talk at the Conference on Intersections of Particle and Nuclear Physics, St. Petersburg, FL, May 2012, to be published.

  42. R. Miskimen, HIGS Proposal P-06-09, Measuring the Spin Polarizabilities of the Proton in Double-Polarized Real Compton Scattering (2009).

  43. D. Hornidge, talk at the Conference on Intersections of Particle and Nuclear Physics, St. Petersburg, FL, May 2012, to be published.

  44. W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 73, 114505 (2006).

    Article  ADS  Google Scholar 

  45. W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 79, 094505 (2009).

    Article  ADS  Google Scholar 

  46. W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 81, 054502 (2010).

    Article  ADS  Google Scholar 

  47. M. Engelhardt, PoS LATTICE 2011, 153 (2011).

    Google Scholar 

  48. M. Lujan, A. Alexandru, F. Lee, PoS LATTICE 2011, 165 (2011).

    Google Scholar 

  49. K. Pachucki, Phys. Rev. A 60, 3593 (1999).

    Article  ADS  Google Scholar 

  50. C.E. Carlson, M. Vanderhaeghen, arXiv:1109.3779 [physics.atom-ph].

  51. M.C. Birse, J.A. McGovern, Eur. Phys. J. A 48, 120 (2012).

    Article  ADS  Google Scholar 

  52. D.R. Phillips, J. Phys. G 36, 104004 (2009).

    Article  ADS  Google Scholar 

  53. A. Walker-Loud, C.E. Carlson, G.A. Miller, Phys. Rev. Lett. 108, 232301 (2012).

    Article  ADS  Google Scholar 

  54. V. Bernard, N. Kaiser, A. Schmidt, U.-G. Meißner, Phys. Lett. B 319, 269 (1993).

    Article  ADS  Google Scholar 

  55. S. Ragusa, Phys. Rev. D 47, 3757 (1993).

    Article  ADS  Google Scholar 

  56. J.A. McGovern, Phys. Rev. C 63, 064608 (2001).

    Article  ADS  Google Scholar 

  57. S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Phys. Lett. B 567, 200 (2003) 607.

    Article  ADS  Google Scholar 

  58. S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Nucl. Phys. A 747, 311 (2005).

    Article  ADS  Google Scholar 

  59. T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Lett. B 395, 89 (1997).

    Article  ADS  Google Scholar 

  60. T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G 24, 1831 (1998).

    Article  ADS  Google Scholar 

  61. T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Rev. D 55, 5598 (1997).

    Article  ADS  Google Scholar 

  62. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004).

    Article  ADS  Google Scholar 

  63. V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003).

    Article  ADS  Google Scholar 

  64. T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643 (1999).

    ADS  Google Scholar 

  65. T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, Phys. Rev. D 68, 056005 (2003).

    Article  ADS  Google Scholar 

  66. V. Lensky, V. Pascalutsa, Pisma Zh. Eksp. Teor. Fiz. 89, 127 (2009).

    Google Scholar 

  67. V. Lensky, V. Pascalutsa, Eur. Phys. J. C 65, 195 (2010).

    Article  ADS  Google Scholar 

  68. V. Lensky, J.A. McGovern, D.R. Phillips, V. Pascalutsa, Phys. Rev. C 86, 048201 (2012).

    Article  ADS  Google Scholar 

  69. J.A. McGovern, H.W. Grießhammer, D.R. Phillips, D. Shukla, PoS CD 09, 059 (2009).

    Google Scholar 

  70. D.R. Phillips, J.A. McGovern, H.W. Grießhammer, talk at the Conference on Intersections of Particle and Nuclear Physics, St. Petersburg, FL, May 2012, to be published (arXiv:1210.3577).

  71. D. Babusci, G. Giordano, A.I. L’vov, G. Matone, A.M. Nathan, Phys. Rev. C 58, 1013 (1998).

    Article  ADS  Google Scholar 

  72. H.W. Grießhammer, T.R. Hemmert, Phys. Rev. C 65, 045207 (2002).

    Article  ADS  Google Scholar 

  73. N. Fettes, U.-G. Meißner, M. Mojžiš, S. Steininger, Ann. Phys. 283, 273 (2000) 288.

    Article  ADS  Google Scholar 

  74. U.-G. Meißner, G. Müller, S. Steininger, Ann. Phys. 279, 1 (2000).

    Article  ADS  Google Scholar 

  75. G.C. Gellas, T.R. Hemmert, C.N. Ktorides, G.I. Poulis, Phys. Rev. D 60, 054022 (1999).

    Article  ADS  Google Scholar 

  76. T.R. Hemmert, B.R. Holstein, J. Kambor, G. Knochlein, Phys. Rev. D 57, 5746 (1998).

    Article  ADS  Google Scholar 

  77. R.P. Hildebrandt, PhD Thesis, TU München (2005) nucl-th/0512064.

  78. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 73, 034003 (2006).

    Article  ADS  Google Scholar 

  79. K.M. Watson, Phys. Rev. 95, 228 (1954).

    Article  ADS  MATH  Google Scholar 

  80. B. Long, U. van Kolck, Nucl. Phys. A 840, 39 (2010).

    Article  ADS  Google Scholar 

  81. B. Pasquini, P. Pedroni, D. Drechsel, Phys. Lett. B 687, 160 (2010).

    Article  ADS  Google Scholar 

  82. F. Wissmann, Compton Scattering: Investigating the Structure of the Nucleon with Real Photons, in Springer Tracts in Modern Physics, Vol. 200 (Springer, 2004).

  83. P.S. Baranov, A.I. Lvov, V.A. Petrunkin, N.L. Shtarkov, Phys. Part. Nucl. 32, 376 (2001).

    Google Scholar 

  84. Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  85. M.I. Levchuk, A.I. L’vov, Nucl. Phys. A 674, 449 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. McGovern.

Additional information

Communicated by B. Ananthanarayan

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGovern, J.A., Phillips, D.R. & Grießhammer, H.W. Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom. Eur. Phys. J. A 49, 12 (2013). https://doi.org/10.1140/epja/i2013-13012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13012-1

Keywords

Navigation