Skip to main content
Log in

Representing environment-induced helix-coil transitions in a coarse grained peptide model

  • Regular Article
  • Methodological Aspects of Coarse Graining
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a C α -C α -C α -C α pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that correctly represents the peptide's conformational response to different stimuli compared to atomistic reference simulations. The two types of auxiliary interactions lead to different kinetic behavior as well as to different structural properties for fully formed helices and folding intermediates, and we discuss the advantages and disadvantages of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.O. Dror, R.M. Dirks, J.P. Grossman, H. Xu, D.E. Shaw, Annu. Rev. Biophys. 41, 429 (2012)

    Article  Google Scholar 

  2. A. Morriss-Andrews, J.-E. Shea, Annu. Rev. Phys. Chem. 66, 643 (2015)

    Article  ADS  Google Scholar 

  3. J.-E. Shea, C.L. Brooks III, Annu. Rev. Phys. Chem. 52, 499 (2001)

    Article  ADS  Google Scholar 

  4. C. Wu, J.-E. Shea, Curr. Opin. Struct. Biol. 21, 209 (2011)

    Article  Google Scholar 

  5. J.A. Lemkul, D.R. Bevan, ACS Chem. Neurosci. 3, 845 (2012)

    Article  Google Scholar 

  6. E. Brini, E.A. Algaer, P. Ganguly, C. Li, F. Rodríguez-Ropero, N.F.A. van der Vegt, Soft Matter 9, 2108 (2013)

    Article  ADS  Google Scholar 

  7. S. Riniker, J.R. Allison, W.F. van Gunsteren, Phys. Chem. Chem. Phys. 14, 12423 (2012)

    Article  Google Scholar 

  8. M.G. Saunders, G.A. Voth, Curr. Opin. Struct. Biol. 22, 144 (2012)

    Article  Google Scholar 

  9. S. Takada, Curr. Opin. Struct. Biol. 22, 130 (2012)

    Article  Google Scholar 

  10. V. Tozzini, Quart. Rev. Biophys. 43, 333 (2010)

    Article  Google Scholar 

  11. W.G. Noid, J. Chem. Phys. 139, 090901 (2013)

    Article  ADS  Google Scholar 

  12. O. Engin, A. Villa, C. Peter, M. Sayar, Macromol. Theory Simul. 20, 451 (2011)

    Article  Google Scholar 

  13. F. Rodríguez-Ropero, N.F.A. van der Vegt, Phys. Chem. Chem. Phys. 17, 8491 (2015)

    Article  Google Scholar 

  14. F. Rodríguez-Ropero, T. Hajari, N.F.A. van der Vegt, J. Phys. Chem. B 119, 15780 (2015)

    Article  Google Scholar 

  15. C. Dalgicdir, C. Globisch, C. Peter, M. Sayar, PLoS Comput. Biol. 11, e1004328 (2015)

    Article  ADS  Google Scholar 

  16. S. Prajapati, V. Bhakuni, K.R. Babu, S.K. Jain, Europ. J. Biochem. 255, 178 (1998)

    Article  Google Scholar 

  17. M. Golczak, The FASEB J. (2001)

  18. H.J. Dyson, P.E. Wright, Curr. Opin. Struct. Biol. 12, 54 (2002)

    Article  Google Scholar 

  19. D.E. Draper, D. Grilley, A.M. Soto, Annu. Rev. Biophys. Biomol. Struct. 34, 221 (2005)

    Article  Google Scholar 

  20. V. Receveur-Bréchot, J.-M. Bourhis, V.N. Uversky, B. Canard, S. Longhi, Proteins: Struct. Funct. Bioinf. 62, 24 (2005)

    Article  Google Scholar 

  21. C. Dalgicdir, M. Sayar, J. Phys. Chem. B 119, 15164 (2015)

    Article  Google Scholar 

  22. O. Engin. M. Sayar, J. Phys. Chem. B 116, 2198 (2012)

    Google Scholar 

  23. C. Dalgicdir, O. Sensoy, C. Peter, M. Sayar, J. Chem. Phys. 139, 234115 (2013)

    Article  ADS  Google Scholar 

  24. I. Dikiy, D. Eliezer, Biochim. Biophys. Acta – Biomembr. 1818, 1013 (2012)

    Article  Google Scholar 

  25. H.A. Lashuel, C.R. Overk, A. Oueslati, E. Masliah, Nat. Rev. Neurosci. 14, 38 (2012)

    Article  Google Scholar 

  26. L. Jean, C.F. Lee, C. Lee, M. Shaw, D.J. Vaux, The FASEB J. 24, 309 (2009)

    Article  Google Scholar 

  27. L. Jean, C.F. Lee, D.J. Vaux, Biophys. J. 102, 1154 (2012)

    Article  ADS  Google Scholar 

  28. A. De Simone, C. Kitchen, A.H. Kwan, M. Sunde, C.M. Dobson, D. Frenkel, Proc. Natl. Acad. Sci. USA 109, 6951 (2012)

    Article  ADS  Google Scholar 

  29. W. Li. Gala, Adv. Drug Delivery Rev. 56, 967 (2004)

    Article  Google Scholar 

  30. V. Tozzini, W. Rocchia, J.A. McCammon, J. Chem. Theory Comput. 2, 667 (2006)

    Article  Google Scholar 

  31. O. Bezkorovaynaya, A. Lukyanov, K. Kremer, C. Peter, J. Comput. Chem. 33, 937 (2012)

    Article  Google Scholar 

  32. A.V. Smith, C.K. Hall, Proteins 44, 344 2001

    Article  Google Scholar 

  33. T. Bereau, M. Deserno, J. Chem. Phys. 130, 235106 (2009)

    Article  ADS  Google Scholar 

  34. S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van der Spoel, et al., Bioinformatics, btt055 (2013)

  35. W.F. Van Gunsteren, H.J.C. Berendsen, Mol. Simul. 1, 173 (1988)

    Article  Google Scholar 

  36. M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia, M. Parrinello, Comput. Phys. Commun. 180, 1961 (2009)

    Article  ADS  Google Scholar 

  37. G. Bussi, Mol. Phys. 112, 379 (2014)

    Article  ADS  Google Scholar 

  38. V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theory Comput. 5, 3211 (2009)

    Article  Google Scholar 

  39. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  40. D. Frishman, P. Argos, Proteins: Struct. Funct. Bioinf. 23, 566 (1995)

    Article  Google Scholar 

  41. W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polym. 49, 61 (1998)

    Article  Google Scholar 

  42. V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Macromolecules 39, 6708 (2006)

    Article  ADS  Google Scholar 

  43. Th. Soddemann, B. Dünweg, K. Kremer, Eur. Phys. J. E 6, 409 (2001)

    Article  Google Scholar 

  44. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    Article  ADS  Google Scholar 

  45. F. Ramezanghorbani, A transferable coarse-grained model for peptides that display an environment driven conformational transition. Master's thesis, Koc University, Koc Universitesi Sariyer Istanbul Turkey, 7 (2015)

  46. B. Hess, D. van Der Spoel, E. Lindahl, Gromacs user manual version 4.5.7. (University of Groningen, Netherland, 2010)

  47. W. Kabsch, C. Sander, Biopolymers 22, 2577 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmet Sayar or Christine Peter.

Electronic supplementary material

Supplementary file supplied by authors.

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalgicdir, C., Globisch, C., Sayar, M. et al. Representing environment-induced helix-coil transitions in a coarse grained peptide model. Eur. Phys. J. Spec. Top. 225, 1463–1481 (2016). https://doi.org/10.1140/epjst/e2016-60147-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60147-8

Navigation