Skip to main content
Log in

Liquid-crystal enabled electrophoresis: Scenarios for driving and reconfigurable assembling of colloids

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We demonstrate several examples of driving and steering of colloids when dispersed in nematic liquid crystals. The driving mechanism is based on the principle of nonlinear electrophoresis which is mediated by the asymmetry in the structure of the defects that the inclusions generate in the host elastic matrix. The steering mechanism originates in the photoactivation of the anchoring conditions of the nematic liquid crystal on one of the enclosing plates. As experimental realizations we first review a scenario of water microdroplets being phoretically transported for cargo release and chemical reaction. Steering is illustrated in terms of the reconfigurable assembly of colloidal particles, either in the form of asters or rotating-mills, commanded by predesigned patterns of illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Agarwal, et al., Small 9, 2785 (2013)

    Article  Google Scholar 

  2. B. Senyuk, et al., Nature 493, 200 (2013)

    Article  ADS  Google Scholar 

  3. T.A. Wood, et al., Science 334, 79 (2011)

    Article  ADS  Google Scholar 

  4. P. Poulin, et al., Science 275, 1770 (1997)

    Article  Google Scholar 

  5. J.C. Loudet, et al., Nature 407, 6111 (2000)

    Google Scholar 

  6. J. Yamamoto, et al., Nature 409, 322 (2001)

    Article  ADS  Google Scholar 

  7. C. Lapointe, et al., Science 303, 652 (2004)

    Article  ADS  Google Scholar 

  8. M. Yada, et al., Phys. Rev. Lett. 92, 185501 (2004)

    Article  ADS  Google Scholar 

  9. I. Musevic, et al., Science 313, 954 (2006)

    Article  ADS  Google Scholar 

  10. O.P. Pishnyak, et al., Phys. Rev. Lett. 99, 127802 (2007)

    Article  ADS  Google Scholar 

  11. C.P. Lapointe, et al., Science 326, 1083 (2009)

    Article  ADS  Google Scholar 

  12. G.M. Koening, et al., Proc. Natl. Acad. Sci. USA 107, 3998 (2010)

    Article  ADS  Google Scholar 

  13. U. Tkalec, et al., Science 333, 62 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. R.P. Trivedi, et al., Proc. Natl. Acad. Sci. USA 109, 4744 (2012)

    Article  ADS  Google Scholar 

  15. H. Qi, et al., Adv. Funct. Mat. 18, 212 (2008)

    Article  Google Scholar 

  16. S. Acharya, et al., Adv. Mat. 21, 989 (2009)

    Article  Google Scholar 

  17. S. Zhou, et al., Proc. Natl. Acad. Sci. USA 111, 1265 (2014)

    Article  ADS  Google Scholar 

  18. P.C. Mushenheim, et al., Soft Matter 10, 88 (2014)

    Article  ADS  Google Scholar 

  19. P. Oswald, et al., Nematic and cholesteric liquid crystals: Concepts and physical properties illustrated by experiments (Taylor and Francis, Boca Raton, 2005)

  20. P. Poulin, et al., Phys. Rev. E 57, 626 (1998)

    Article  ADS  Google Scholar 

  21. T.C. Lubensky, et al., Phys. Rev. E 57, 610 (1998)

    Article  ADS  Google Scholar 

  22. Y. Gu, et al., Phys. Rev. Lett. 85, 4719 (2000)

    Article  ADS  Google Scholar 

  23. O.D. Lavrentovich, et al., Nature 467, 947 (2010)

    Article  ADS  Google Scholar 

  24. T.M. Squires, et al., J. Fluid. Mech. 509, 217 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. O.D. Lavrentovich, et al., Soft Matter 10, 1264 (2014)

    Article  ADS  Google Scholar 

  26. V.A. Murtsokvin, et al., Colloid J. 52, 933 (1990)

    Google Scholar 

  27. S. Gangwal, et al., Phys. Rev. Lett. 100, 058302 (2008)

    Article  ADS  Google Scholar 

  28. M.C. Marchetti, et al., Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  29. V. Schaller, et al., Nature 467, 73 (2010)

    Article  ADS  Google Scholar 

  30. Y. Sumino, et al., Nature 483, 448 (2012)

    Article  ADS  Google Scholar 

  31. T. Sanchez, et al., Nature 491, 431 (2012)

    Article  ADS  Google Scholar 

  32. A. Yethiraj, et al., Adv. Mat. 16, 596 (2004)

    Article  Google Scholar 

  33. A. Terray, et al., Science 296, 1841 (2002)

    Article  ADS  Google Scholar 

  34. E.C. Dreaden, et al., Chem. Soc. Rev. 41, 2740 (2012)

    Article  Google Scholar 

  35. G.M. Whitesides, et al., Science 295, 2418 (2002)

    Article  ADS  Google Scholar 

  36. N.I. Zheludev, et al., Nat. Mat. 11, 917 (2012)

    Article  Google Scholar 

  37. D.G. Grier, Nature 424, 810 (2003)

    Article  ADS  Google Scholar 

  38. W.F. Paxton, et al., J. Am. Chem. Soc. 126, 13424 (2004)

    Article  Google Scholar 

  39. J.R. Howse, et al., Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  40. I. Buttinoni, et al., Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  41. J. Palacci, et al., Science 339, 936 (2013)

    Article  ADS  Google Scholar 

  42. A. Bricard, et al., Nature 503, 95 (2013)

    Article  ADS  MATH  Google Scholar 

  43. J. Guzowski, et al., Soft Matter 8, 7269 (2012)

    Article  ADS  MATH  Google Scholar 

  44. S. Hernàndez-Navarro, et al., Soft Matter 9, 7999 (2013)

    Article  ADS  Google Scholar 

  45. H. Stark, Eur. Phys. J.B 10, 311 (1999)

    Article  ADS  Google Scholar 

  46. S. Hernàndez-Navarro, et al., Angew. Chem. Int. Ed. 53, 10696 (2014)

    Article  MATH  Google Scholar 

  47. J. Ignés-Mullol, et al., Langmuir 21, 2948 (2005)

    Article  Google Scholar 

  48. T. Nagatani, et al., J. Phys. Soc. Jpn. 59, 3447 (1990)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sagués.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernàndez-Navarro, S., Tierno, P., Ignés-Mullol, J. et al. Liquid-crystal enabled electrophoresis: Scenarios for driving and reconfigurable assembling of colloids. Eur. Phys. J. Spec. Top. 224, 1263–1273 (2015). https://doi.org/10.1140/epjst/e2015-02458-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02458-y

Keywords

Navigation