Skip to main content
Log in

A critical appraisal of Markov state models

  • Review
  • B. Bridging of Time Scales and Methods for Rare Events
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Markov State Modelling as a concept for a coarse grained description of the essential kinetics of a molecular system in equilibrium has gained a lot of attention recently. The last 10 years have seen an ever increasing publication activity on how to construct Markov State Models (MSMs) for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecular sensors to molecular aggregation. Simultaneously the accompanying theory behind MSM building and approximation quality has been developed well beyond the concepts and ideas used in practical applications. This article reviews the main theoretical results, provides links to crucial new developments, outlines the full power of MSM building today, and discusses the essential limitations still to overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. Schütte, A. Fischer, W. Huisinga, P. Deuflhard, J. Comput. Phys. 151, 146 (1999), Special Issue on Computational Biophysics

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Deuflhard, W. Huisinga, A. Fischer, Ch. Schütte, Lin. Alg. Appl. 315, 39 (2000)

    Article  Google Scholar 

  3. P. Deuflhard, M. Weber, Lin. Alg. Appl. 161(184), 398 (2005), Special issue on matrices and mathematical biology

    MathSciNet  Google Scholar 

  4. N. Djurdjevac, M. Sarich, Ch. Schütte, Multiscale Model. Simul. 10(1), 61 (2012)

    Article  MathSciNet  Google Scholar 

  5. M. Sarich, F. Noé, Ch. Schütte, SIAM Multiscale Model. Simul. 8, 1154 (2010)

    Article  Google Scholar 

  6. Ch. Schütte, M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches, Vol. 24 of Courant Lecture Notes (American Mathematical Society, 2013)

  7. W.C. Swope, J.W. Pitera, F. Suits, J. Phys. Chem. B 108, 6571 (2004)

    Article  Google Scholar 

  8. J. Chodera, N. Singhal, V.S. Pande, K. Dill, W. Swope, J. Chem. Phys. 126, (2007)

  9. F. Noé, Ch. Schütte, E. Vanden-Eijnden, L. Reich, T.R. Weikl, Proc. Natl. Acad. Sci. USA 106, 19011 (2009)

    Article  ADS  Google Scholar 

  10. V. Pande, K. Beauchamp, G. Bowman, Methods 52(1), 99 (2010)

    Article  Google Scholar 

  11. K.J. Kohlhoff, D. Shukla, M. Lawrenz, G.R. Bowman, D.E. Konerding, D. Belov, R.B. Altman, V.S. Pande, Nat. Chem. 6(1), 15 (2014)

    Article  Google Scholar 

  12. C.R. Schwantes, R.T. McGibbon, V.S. Pande, J. Chem. Phys. 141(9), (2014)

  13. Ch. Schütte, Conformational dynamics: Modelling, theory, algorithm, and application to biomolecules, 1998, Habilitation Thesis

  14. P. Deuflhard, M. Dellnitz, O. Junge, Ch. Schütte, Lecture Notes in Computational Science and Engineering (Springer, 1999), p. 98

  15. B.G. Keller, J.-H. Prinz, F. Noé, Chem. Phys. 396, 92 (2012)

    Article  ADS  Google Scholar 

  16. G.R. Bowman, V.S. Pande, F. Noé (eds.), An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, Vol. 797 of Advances in Experimental Medicine and Biology (Springer, 2014)

  17. M. Senne, B. Trendelkamp-Schroer, A.S.J.S. Mey, Ch. Schütte, F. Noé, J. Chem. Theory Comput. 8, 2223 (2012)

    Article  Google Scholar 

  18. K.A. Beauchamp, G.R. Bowman, T.J. Lane, L. Maibaum, I.S. Haque, V.S. Pande, J. Chem. Theor. Comput. (2011)

  19. A. Bujotzek, O. Schütt, A. Nielsen, K. Fackeldey, M. Weber, J. Math. Chem. 52, 781 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ch. Schütte, W. Huisinga, Handbook of Numerical Analysis (Elsevier, 2003), p. 699

  21. N.V. Buchete, G. Hummer, J. Phys. Chem. B 112, 6057 (2008)

    Article  Google Scholar 

  22. Ch. Schütte, F. Noé, J. Lu, M. Sarich, E. Vanden-Eijnden, J. Chem. Phys. 134, 204105 (2011)

    Article  ADS  Google Scholar 

  23. M. Sarich, Projected Transfer Operators, Ph.D. thesis Free University Berlin, 2011

  24. M. Weber, Meshless Methods in conformation dynamics, Ph.D. thesis FU Berlin, 2006

  25. N. Djurdjevac, M. Sarich, Ch. Schütte, On Markov state models for metastable processes, In Proceedings of the International Congress of Mathematicians (ICM 2010) (Hyderabad, India, Vol. IV), (Singapore, World Scientific, 2011), p. 3105

  26. H. Wang, Ch. Schütte, J. Chem. Theo. Comput. (2015)

  27. M. Doi, S.F. Edwards, The theory of polymer dynamics (Oxford University Press, 1986)

  28. J.-H. Prinz, H. Wu, M. Sarich, J. Chem. Phys. 134, 174105 (2011)

    Article  ADS  Google Scholar 

  29. F. Nüske, B.G. Keller, G. Pérez-Hernández, A.S.J.S. Mey, F. Noé, J. Chem. Theory Comput. 10, 1739 (2014)

    Article  Google Scholar 

  30. F. Noé, F. Nüske, SIAM Multiscale Model. Simul. 11, 635 (2013)

    Article  Google Scholar 

  31. M. Sarich, R. Banisch, C. Hartmann, Ch. Schütte, Entropy (Special Issue) 16(1), 258 (2013)

    MathSciNet  ADS  Google Scholar 

  32. K. Fackeldey, S. Röblitz, O. Scharkoi, M. Weber, E. Onate, D.R.J. Owen, (eds.), Particle Methods II, Fundamentals and Applications (Barcelona, Spain, 2011), p. 899

  33. K. Fackeldey, A. Bujotzek, M. Weber, M. Griebel, M.A. Schweitzer (eds.), Lecture Notes in Computational Science and Engineering 89, Meshfree Methods for Partial Differential Equations VI (Springer, 2013), p. 141

  34. M. Weber, A Subspace Approach to Molecular Markov State Models via a New Infinitesimal Generator, Habilitation Thesis, Fachbereich Mathematik und Informatik (Freie Universität Berlin, 2011)

  35. M. Sarich, Ch. Schütte, Comm. Math. Sci. 10(3), 1001 (2012)

    Article  MathSciNet  Google Scholar 

  36. F. Noe, I. Horenko, Ch. Schütte, J.C. Smith, J. Chem. Phys. 126, 155102 (2007)

    Article  ADS  Google Scholar 

  37. Ph. Metzner, M. Weber, Ch. Schütte, Phys. Rev. E 82(3), 031114 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  38. F. Noé, J.D. Chodera, G.R. Bowman, V.S. Pande, F. Noé (eds.), An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, vol. 797 of Advances in Experimental Medicine and Biology (Springer, 2014), p. 61

  39. B. Trendelkamp-Schroer, F. Noé, J. Phys. Chem. 138, 164113 (2013)

    Article  Google Scholar 

  40. J. Shen, L.-L. Wang, SIAM J. Numer. Anal. 48(3), 1087 (2010)

    Article  MathSciNet  Google Scholar 

  41. T. Gerstner, M. Griebel, Computing 71(1), 65 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Schütte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütte, C., Sarich, M. A critical appraisal of Markov state models. Eur. Phys. J. Spec. Top. 224, 2445–2462 (2015). https://doi.org/10.1140/epjst/e2015-02421-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02421-0

Keywords

Navigation