Skip to main content
Log in

Multiscale molecular dynamics/hydrodynamics implementation of two dimensional “Mercedes Benz” water model

  • Regular Article
  • A. Representation of Molecular Systems Across Scales
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Ben-Naim, J. Chem. Phys. 54, 3682 (1971)

    Article  ADS  Google Scholar 

  2. A. Thomas, A. Elcock, J. Am. Chem. Soc. 126, 2208 (2004)

    Article  Google Scholar 

  3. S. McGuffee, A. Elcock, PLoS Comput. Biol. 6, e1000694 (2010)

    Article  ADS  Google Scholar 

  4. P. Kumar, G. Franzese, S. Buldyrev, E. Stanley, Phys. Rev. E. 73, 041505 (2006)

    Article  ADS  Google Scholar 

  5. K. Umezawa, R. Morikawa, H. Nakamura, J. Higo, J. Chem. Phys. 132, 155103 (2010)

    Article  ADS  Google Scholar 

  6. H. Frauenfelder, G. Chen, J. Berendzen, P.W. Fenimore, H. Jansson, B.H. McMahon, I.R. Stroe, J. Swenson, R.D.A. Young, Natl. Acad. Sci. USA 106, 5129 (2009)

    Article  ADS  Google Scholar 

  7. D. Nerukh, S. Karabasov, J. Phys. Chem. Lett. 4, 815 (2013)

    Article  Google Scholar 

  8. G.D. Fabritiis, R. Delgado-Buscalioni, P.V. Coveney, Phys. Rev. Lett. 97, 134501 (2006)

    Article  ADS  Google Scholar 

  9. S. O’Connell, P. Thompson, Phys. Rev. E 52, 5792 (1995)

    Article  ADS  Google Scholar 

  10. E.G. Flekkoy, G. Wagner, J. Feder, Europhys. Lett. 52, 271 (2000)

    Article  ADS  Google Scholar 

  11. A. Asproulis, M. Kalweit, D. Drikakis, Adv. Eng. Softw. 46, 85 (2012)

    Article  Google Scholar 

  12. R. Steijl, G. Barakos, Int. J. Numer. Meth. Fluids 69, 1326 (2012)

    Article  Google Scholar 

  13. X.B. Nie, S.Y. Chen, W.N. E, M.O. Robbins, J. Fluid Mech. 500, 55 (2004)

    Article  ADS  Google Scholar 

  14. O. Zikanov, Essential Computational Fluid Dynamics (New York: John Wiley, 2010)

  15. S. Fritsch, S. Poblete, C. Junghans, L. Delle Site K. Kremer, Phys. Rev. Lett. 108, 170602 (2012)

    Article  ADS  Google Scholar 

  16. M. Praprotnik, L. Delle Site, K. Kremer, Phys. Rev. E. 73, 066701 (2006)

    Article  ADS  Google Scholar 

  17. H. Wang, C. Schuette, L. Delle Site, J. Chem. Theory Comput. 8, 2878, (2012)

    Article  Google Scholar 

  18. H. Wang, C. Hartmann, C. Schuette, L. Delle Site, Phys. Rev. X. 3, 011018 (2013)

    Google Scholar 

  19. A. Markesteijn, S. Karabasov, A. Scukins, D. Nerukh, V. Glotov, V. Goloviznin, Phil. Trans. R. Soc. A 372, 20130379 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. E. Pavlov, M. Taiji, A. Scukins, A. Markesteijn, S. Karabasov, D. Nerukh, “Visualising and controlling the flows in biomolecular systems at and between multiple scales: from atoms to hydrodynamics at different locations in time and space,” Faraday Discussions of the Royal Society of Chemistry, doi: (2014)

  21. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (USA: Oxford University Press, 2000)

  22. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)

    Article  ADS  Google Scholar 

  23. K.A.T. Silverstein, A.D.J. Haymet, K.A. Dill, J. Am. Chem. Soc. 120, 3166 (1998)

    Article  Google Scholar 

  24. Y. Kataoka, Bull. Chem. Soc. Japan 57, 1522 (1983)

    Article  Google Scholar 

  25. Y. Kataoka, Bull. Chem. Soc. Japan 59, 3341 (1985)

    Article  Google Scholar 

  26. K. Okazaki, S. Nosé, Y. Kataoka, T. Yamamoto, J. Chem. Phys. 75, 5864 (1981)

    Article  ADS  Google Scholar 

  27. F. Hirata, P.J. Rossky, J. Chem. Phys. 74, 6867 (1981)

    Article  ADS  Google Scholar 

  28. C.L. Dias, T. Ala-Nissala, M. Karttunen, I. Vattulainen, M. Grant, Phys. Rev. Lett. 100, 118101 (2008)

    Article  ADS  Google Scholar 

  29. C.L. Dias, Phys. Rev. Lett. 109, 048104 (2012)

    Article  ADS  Google Scholar 

  30. G.S. Kell, J. Chem. Eng. Data 20, 97 (1975)

    Article  Google Scholar 

  31. T. Urbič, V. Vlachy, Y.V. Kalyuzhnyi, N.T. Southall, K.A. Dill, J. Chem. Phys. 116, 723 (2002)

    Article  ADS  Google Scholar 

  32. T. Urbič, V. Vlachy, Y.V. Kalyuzhnyi, K.A. Dill, J. Chem. Phys. 118, 5516 (2003)

    Article  ADS  Google Scholar 

  33. T. Urbič, V. Vlachy, Y.V. Kalyuzhnyi, K.A. Dill, J. Chem. Phys. 127, 174505 (2007)

    Article  ADS  Google Scholar 

  34. T. Urbič, V. Vlachy, Y.V. Kalyuzhnyi, K.A. Dill, J. Chem. Phys. 127, 174511 (2007)

    Article  ADS  Google Scholar 

  35. T. Urbič, M.F. Holovkol, J. Chem. Phys. 135, 134706 (2011)

    Article  ADS  Google Scholar 

  36. C.L. Dias, T.A.-N.J. Wong-ekkabut, I. Vattulainen, M. Grant, M. Karttunen, Cryobiology 60, 91 (2010)

    Article  Google Scholar 

  37. D. Drew, S.L. Passman, Theory of Multicomponent Fluids (New York: Springers, 1999)

  38. G.D. Fabritiis, M. Serrano, R. Delgado-Buscalioni, P. Coveney, Phys. Rev. E 75, 026307 (2007)

    Article  ADS  Google Scholar 

  39. L. Landau, E. Lifshitz, Fluid Mechanics (Pergamon press, 1966)

  40. J. Anderson, E. Dick, G. Degrez, R. Grundmann, J. Degroote, J. Vierendeels, Computational Fluid Dynamics (Berlin: Springer, 2009)

  41. P. Mark, L. Nilsson, J. Phys. Chem. A, 105, 9954 (2001)

    Article  Google Scholar 

  42. M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford: Oxford University Press, 2012)

  43. A. Markesteijn, S. Karabasov, V. Glotov, V. Goloviznin, “A new non-linear two-time-level central leapfrog scheme in staggered conservation-flux variables for fluctuating hydrodynamics equations with gpu implementation,” Computer Methods in Applied Mechanics and Engineering, vol. under revision (2014)

  44. V. Glotov, V. Goloviznin, S. Karabasov, A. Markesteijn, Comput. Math. Math. Phys. 54, 315 (2014)

    Article  MathSciNet  Google Scholar 

  45. N.K. Voulgarakis, J.-W. Chu, J. Chem. Phys. 130 (2009)

  46. A. Markesteijn, S. Karabasov, J. Comp. Phys. 258, 137 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  47. V. Semiletov, S. Karabasov, J. Comp. Phys. 253, 157 (2013)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Scukins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scukins, A., Nerukh, D., Pavlov, E. et al. Multiscale molecular dynamics/hydrodynamics implementation of two dimensional “Mercedes Benz” water model. Eur. Phys. J. Spec. Top. 224, 2217–2238 (2015). https://doi.org/10.1140/epjst/e2015-02409-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02409-8

Keywords

Navigation