Skip to main content
Log in

Spectroscopic issues in optical polarization of 3He gas for Magnetic Resonance Imaging of human lungs

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The Magnetic Resonance Imaging (MRI) of human lungs for diagnostic purposes became possible by using nuclear spin hyperpolarized noble gases, such as 3He. One of the methods to polarize 3He is the Metastability Exchange Optical Pumping (MEOP), which up to now has been performed at low pressure of about 1 mbar and in low magnetic field below 0.1 T (standard conditions). The equilibrium nuclear polarization can reach up to 80%, but it is dramatically reduced during the subsequent gas compression to the atmospheric pressure that is necessary for the lungs examination. Further polarization losses occur during the transportation of the gas to the hospital scanner. It was shown recently that up to 50% polarization can be obtained at elevated pressure exceeding 20 mbar, by using magnetic field higher than 0.1 T (nonstandard conditions). Therefore, following the construction of the low-field MEOP polarizer located in the lab, a dedicated portable unit was developed, which uses the magnetic field of the 1.5 T MR medical scanner and works in the continuous-flow regime. The first in Poland MRI images of human lungs in vivo were obtained on the upgraded to 3He resonance frequency Siemens Sonata medical scanner. An evident improvement in the image quality was achieved when using the new technique. The paper shows how spectroscopic measurements of 3He carried out in various experimental conditions led both to useful practical results and to significant progress in understanding fundamental processes taking place during MEOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.D. Colegrove, et al., Phys. Rev. 132, 2561 (1963)

    Article  ADS  Google Scholar 

  2. M. Leduc, J. Phys. Colloques (France) 51, 317 (1990)

    Article  Google Scholar 

  3. M. Abboud, et al., Europhysics Lett. 68, 480 (2004)

    Article  ADS  Google Scholar 

  4. E. Courtade, et al., The European Phys. J. D 21, 25 (2002)

    Article  ADS  Google Scholar 

  5. B. Glowacz, Detection of metastable He2* molecules in helium plasma Ph.D. thesis, Uniwersytet Jagiellonski, Krakow; Université Pierre et Marie Curie Paris, 2011

  6. C. Mrozik, et al., J. Phys.: Conf. Ser. 294, 012007 (2011)

    Article  ADS  Google Scholar 

  7. Güldner, et al., J. Phys.: Conf. Ser. 294, 012006 (2011)

    Article  ADS  Google Scholar 

  8. Z. Salhi, et al., Magnetic Res. Med. 67, 1758 (2012)

    Article  Google Scholar 

  9. T.R. Gentile, et al., J. Res. National Inst. Stand. Technol. 106, 709 (2001)

    Article  Google Scholar 

  10. P.J. Nacher, Peristaltic compressors suitable for relaxation-free compression of polarized gas (United States patent no. US6655931, 2003)

  11. G. Collier, et al., Optica Applicata 42, 223 (2012)

    Google Scholar 

  12. K. Suchanek, et al., Eur. Phys. J. Special Topics 144, 67 (2007)

    Article  ADS  Google Scholar 

  13. A. Nikiel, et al., Eur. Phys. J. Special Topics 144, 255 (2007)

    Article  ADS  Google Scholar 

  14. A. Nikiel-Osuchowska, et al., Euro. Phys. J. Appl. Phys., http://hal.archives-ouvertes.fr/hal-00790331, (submitted) (2013)

  15. G. Collier, Metastability Exchange Optical Pumping (MEOP) of 3He in situ, Ph.D. thesis, Jagiellonian University in Krakow, 2011

  16. G. Tastevin, et al., Appl. Phys. B 78, 145 (2004)

    Article  ADS  Google Scholar 

  17. P.J. Nacher, M. Leduc, J. Phys. (France) 46, 2057 (1985)

    Article  Google Scholar 

  18. E. Stoltz, et al., Appl. Phys. B 63, 629 (1996)

    ADS  Google Scholar 

  19. M. Batz, Metastability exchange optical pumping of 3He gas up to 30 mT: Efficiency measurements and evidence of laser-induced nuclear relaxation, Ph.D. thesis, Université Pierre et Marie Curie Paris and Johannes Gutenberg-Universiät Mainz, 2011

  20. F. Laloë, Annales Phys. 6, 5 (1971)

    Google Scholar 

  21. M. Leduc, et al., J. Phys. II (France) 2, 2159 (1992)

    Article  Google Scholar 

  22. W. Lorenzon, et al., Phys. Rev. A 47, 468 (1993)

    Article  ADS  Google Scholar 

  23. C. Talbot, et al., J. Phys.: Conf. Ser. 294, 012008 (2011)

    Article  ADS  Google Scholar 

  24. M. Abboud, Pompage optique de l’ helium-3 a forte pression dans un champ magnetique de 1.5 Tesla, Ph.D. thesis, Université Pierre et Marie Curie Paris, 2005

  25. L. Wilmer Anderson, et al., Phys. Rev. 116, 87 (1959)

    Article  ADS  Google Scholar 

  26. T. Dohnalik, et al., Eur. Phys. J. - Appl. Phys. 54, 20802 (2011)

    Article  ADS  Google Scholar 

  27. F. Pereira Dos Santos, et al., Eur. Phys. J. D 14, 15 (2001)

    Article  ADS  Google Scholar 

  28. P.-J. Nacher, et al., Acta Physica Polonica B 33, 2225 (2002)

    ADS  Google Scholar 

  29. G.D. Cates, et al., Phys. Rev. A 37, 2877 (1988)

    Article  ADS  Google Scholar 

  30. W.A. Fitzsimmons, et al., Phys. Rev. 179, 156 (1969)

    Article  ADS  Google Scholar 

  31. A. Deninger, et al., Eur. Phys. J. D 38, 439 (2006)

    Article  ADS  Google Scholar 

  32. J. Schmiedeskamp, et al., Eur. Phys. J. D 38, 427 (2006)

    Article  ADS  Google Scholar 

  33. J. Schmiedeskamp, et al., Eur. Phys. J. D 38, 445 (2006)

    Article  ADS  Google Scholar 

  34. W. Heil, et al., Phys. Lett. A 201, 337 (1995)

    Article  ADS  Google Scholar 

  35. J.L. Flowers, et al., Instr. Meas. IEEE Trans. 46, 104 (1997)

    Article  Google Scholar 

  36. M. Batz, et al., J. Phys.: Conf. Ser. 294, 012002 (2011)

    Article  ADS  Google Scholar 

  37. E. Courtade, Pompage optique de l’helium dans des conditions non-standard, Ph.D. thesis, Université Paris XI, 2001

  38. F. Emmert, et al., J. Phys. D 21, 667 (1988)

    Article  ADS  Google Scholar 

  39. G. Tastevin, et al., J. Low Temperature Phys. 158, 339 (2010)

    Article  ADS  Google Scholar 

  40. G.H. Dieke, E.S. Robinson, Phys. Rev. 80, 1 (1950)

    Article  ADS  Google Scholar 

  41. S. Takao, et al., J. Chemical Phys. 73, 148 (1980)

    Article  ADS  Google Scholar 

  42. M. Kristensen, N. Bjerre, J. Chemical Phys. 93, 983 (1990)

    Article  ADS  Google Scholar 

  43. I. Hazell, et al., J. Molecular Spectroscopy 172, 135 (1995)

    Article  ADS  Google Scholar 

  44. W. Lichten, T. Wik, J. Chem. Phys. 69, 98 (1978)

    Article  ADS  Google Scholar 

  45. G. Collier, et al., J. Appl. Phys. [arXiv:1302.4863], (submitted) (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wojna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohnalik, T., Głowacz, B., Olejniczak, Z. et al. Spectroscopic issues in optical polarization of 3He gas for Magnetic Resonance Imaging of human lungs. Eur. Phys. J. Spec. Top. 222, 2103–2118 (2013). https://doi.org/10.1140/epjst/e2013-01989-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01989-5

Keywords

Navigation