Skip to main content
Log in

Vortex rings and solitary waves in trapped Bose–Einstein condensates

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We discuss nonlinear excitations in an atomic Bose–Einstein condensate which is trapped in a harmonic potential. We focus on axially symmetric solitary waves propagating along a cylindrical condensate. A quasi one-dimensional dark soliton is the only nonlinear mode for a condensate with weak interactions. For sufficiently strong interactions of experimental interest solitary waves are hybrids of one-dimensional dark solitons and three-dimensional vortex rings. The energy-momentum dispersion of these solitary waves exhibits characteristics similar to a mode proposed sometime ago by Lieb in a strictly 1D model, as well as some rotonlike features. We subsequently discuss interactions between solitary waves. Head-on collisions between dark solitons are elastic. Slow vortex rings collide elastically but faster ones form intermediate structures during collisions before they lose energy to the background fluid. Solitary waves and their interactions have been observed in experiments. However, some of their intriguing features still remain to be experimentally identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E.A. Cornell, C.E. Wieman, Rev. Mod. Phys. 74, 875 (2002)

    Google Scholar 

  • W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002)

    Google Scholar 

  • C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Google Scholar 

  • V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004)

    Google Scholar 

  • L. Lesanovsky, W. von Klitzing, cond-mat/0612213

  • E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1964)

    Google Scholar 

  • E.H. Lieb, Phys. Rev. 130, 1616 (1964)

    Google Scholar 

  • T. Tsuzuki, J. Low Temp. Phys. 4, 441 (1973)

    Google Scholar 

  • V.E. Zakharov, A.B. Sabat, Sov. Phys. JETP 37, 823 (1973)

    Google Scholar 

  • P.P. Kulish, S.V. Manakov, L.D. Faddeev, Theor. Math. Phys. 28, 615 (1976)

    Google Scholar 

  • M. Ishikawa, H. Takayama, J. Phys. Soc. Jpn. 49, 1242 (1980)

    Google Scholar 

  • S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999)

    Google Scholar 

  • J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Gubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider, W.D. Phillips, Science 287, 97 (2000)

    Google Scholar 

  • B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)

    Google Scholar 

  • Z. Dutton, M. Budde, C. Slowe, L.V. Hau, Science 293, 663 (2001)

    Google Scholar 

  • N.S. Ginsberg, J. Brand, L.V. Hau, Phys. Rev. Lett. 94, 040403 (2005)

    Google Scholar 

  • E.P. Gross, Nuovo Cimento 20, 454 (1961)

    Google Scholar 

  • E.P. Gross, J. Math. Phys. 4, 195 (1963)

    Google Scholar 

  • L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    Google Scholar 

  • S. Komineas, N. Papanicolaou, Phys. Rev. Lett. 89, 070402 (2002)

    Google Scholar 

  • S. Komineas, N. Papanicolaou, Phys. Rev. A 67, 023615 (2003)

    Google Scholar 

  • G. Baym, C.J. Pethick, Phys. Rev. Lett. 76, 6 (1996)

    Google Scholar 

  • V.M. Perez-Garcia, H. Michinel, H. Herrero, Phys. Rev. A 57, 3837 (1998)

    Google Scholar 

  • W.P. Reinhardt, C.W. Clark, J. Phys. B 30, L785 (1997)

  • A.D. Jackson, G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A 58, 2417 (1998)

    Google Scholar 

  • A.E. Muryshev, H.B. van Linden van den Heuvell, G.V. Shlyapnikov, Phys. Rev. A 60, R2665 (1999)

  • T. Busch, J.R. Anglin, Phys. Rev. Lett. 84, 2298 (2000)

    Google Scholar 

  • D.L. Feder, M.S. Pindzola, L.A. Collins, B.I. Schneider, C.W. Clark, Phys. Rev. A 62, 053606 (2000)

    Google Scholar 

  • L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 65, 043614 (2002)

    Google Scholar 

  • N.G. Parker, N.P. Proukakis, M. Leadbeater, C.S. Adams, Phys. Rev. Lett. 90, 220401 (2003)

    Google Scholar 

  • G. Theocharis, P. Schmelcher, M.K. Oberthaler, P.G. Kevrekidis, D.J. Fratzeskakis, Phys. Rev. A 72, 023609 (2005)

    Google Scholar 

  • I.V. Barashenkov, E.Y. Panova, Physica D 69, 114 (1993)

    Google Scholar 

  • G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)

  • P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992)

  • C.A. Jones, P.H. Roberts, J. Phys. A: Math. Gen. 15, 2599 (1982)

    Google Scholar 

  • S. Komineas, N. Papanicolaou, Phys. Rev. A 68, 043617 (2003)

    Google Scholar 

  • A.D. Jackson, G.M. Kavoulakis, Phys. Rev. Lett. 89, 070403 (2002)

    Google Scholar 

  • S. Komineas, N. Papanicolaou, Laser Phys. 14, 571 (2004)

    Google Scholar 

  • R. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

  • L. Carr, C.W. Clark, Phys. Rev. A 74, 043613 (2006)

    Google Scholar 

  • M. Leadbeater, D.C. Samuels, C.F. Barenghi, C.S. Adams, Phys. Rev. Lett. 86, 1410 (2001)

    Google Scholar 

  • J. Ruostekoski, Z. Dutton, Phys. Rev. A 72, 063626 (2005)

    Google Scholar 

  • C.F. Barenghi, R.J. Donnelly, W.F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence (Springer-Verlag, Berlin, Heidelberg, 2001)

  • M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, 1981)

  • J. Koplik, H. Levine, Phys. Rev. Lett. 76, 4745 (1996)

    Google Scholar 

  • N. Berloff, J. Phys. A 37, 1617 (2004)

    Google Scholar 

  • S. Komineas, J. Brand, Phys. Rev. Lett. 95, 110401 (2005)

    Google Scholar 

  • L.K.S.W. Thomson, Nature 24, 47 (1881)

    Google Scholar 

  • L.D. Carr, J. Brand, Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, edited by P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero (Springer, Heidelberg, 2007), Ch. Va

  • J. Brand, W.P. Reinhardt, J. Phys. B: At. Mol. Opt. Phys. 34, L113 (2001)

  • J. Brand, W.P. Reinhardt, Phys. Rev. A 65, 043612 (2002)

    Google Scholar 

  • J. Brand, L.D. Carr, B.P. Anderson, Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, edited by P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero (Springer, Heidelberg, 2007), Ch. Vb

  • E.R. Huggins, Phys. Rev. Lett. 29, 1067 (1972)

    Google Scholar 

  • A.L. Fetter, Phys. Rev. A 6, 402 (1972)

    Google Scholar 

  • M.C. Cross, Phys. Rev. A 10, 1442 (1974)

    Google Scholar 

  • G. Gamota, M. Barmatz, Phys. Rev. Lett. 22, 874 (1969)

    Google Scholar 

  • Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1118 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komineas, S. Vortex rings and solitary waves in trapped Bose–Einstein condensates. Eur. Phys. J. Spec. Top. 147, 133–152 (2007). https://doi.org/10.1140/epjst/e2007-00206-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00206-8

Keywords

Navigation