Skip to main content
Log in

Quantum Google algorithm

Construction and application to complex networks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We review the main findings on the ranking capabilities of the recently proposed Quantum PageRank algorithm (G.D. Paparo et al., Sci. Rep. 2, 444 (2012) and G.D. Paparo et al., Sci. Rep. 3, 2773 (2013)) applied to large complex networks. The algorithm has been shown to identify unambiguously the underlying topology of the network and to be capable of clearly highlighting the structure of secondary hubs of networks. Furthermore, it can resolve the degeneracy in importance of the low-lying part of the list of rankings. Examples of applications include real-world instances from the WWW, which typically display a scale-free network structure and models of hierarchical networks. The quantum algorithm has been shown to display an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance among the nodes, as compared to the classical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Brin, L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998).

    Article  Google Scholar 

  2. L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: Bringing order to the web (1999).

  3. A. Arratia, C. Marijuán, arXiv:1105.1595 (2011).

  4. B. Georgeot, O. Giraud, D.L. Shepelyansky, Phys. Rev. E 81, 056109 (2010).

    Article  ADS  Google Scholar 

  5. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).

  6. A. Galindo, M.A. Martin-Delgado, Rev. Mod. Phys. 74, 347 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (ACM, 1996) pp. 212--219.

  8. A. Galindo, M.A. Martin-Delgado, Phys. Rev. A 62, 062303 (2000).

    Article  ADS  Google Scholar 

  9. G.D. Paparo, V. Dunjko, A. Makmal, M.A. Martin-Delgado, H.J. Briegel, arXiv:1401.4997 (2014).

  10. T.D. Ladd et al., Nature 464, 45 (2010).

    Article  ADS  Google Scholar 

  11. G.D. Paparo, M. Martin-Delgado, Sci. Rep. 2, 444 (2012).

    Article  ADS  Google Scholar 

  12. G.D. Paparo, M. Müller, F. Comellas, M.A. Martin-Delgado, Sci. Rep. 3, 2773 (2013).

    Article  ADS  Google Scholar 

  13. C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Vol. 175 (New York, 1984) p. 8.

  14. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. C. Elliott, The DARPA quantum network, in Quantum Communications and Cryptography, edited by A.V. Sergienko (CRC Press, Boca Raton, 2006) Chapt. 4, pp. 83--102.

  16. A. Poppe, M. Peev, O. Maurhart, Int. J. Quantum Inf. 6, 209 (2008).

    Article  Google Scholar 

  17. M. Sasaki et al., Opt. Express 19, 10387 (2011).

    Article  ADS  Google Scholar 

  18. http://swissquantum.idquantique.com/ (17-06-2013).

  19. D. Lancho, J. Martinez, D. Elkouss, M. Soto, V. Martin, QKD in standard optical telecommunications networks, in Quantum Communication and Quantum Networking (2010) pp. 142--149.

  20. T. Länger, G. Lenhart, New J. Phys. 11, 055051 (2009).

    Article  Google Scholar 

  21. H.J. Kimble, Nature 453, 1023 (2008).

    Article  ADS  Google Scholar 

  22. D.S. Wiersma, Science 327, 1333 (2010).

    Article  Google Scholar 

  23. M.-X. Luo, G. Xu, X.-B. Chen, Y.-X. Yang, X. Wang, Sci. Rep. 4, 4571 (2014).

    ADS  Google Scholar 

  24. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).

    Article  ADS  Google Scholar 

  25. W. Dür, H.J. Briegel, J. Cirac, P. Zoller, Phys. Rev. A 59, 169 (1999).

    Article  ADS  Google Scholar 

  26. N. Sangouard, C. Simon, H. De Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33 (2011).

    Article  ADS  Google Scholar 

  27. B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Gisin, Phys. Rev. A 83, 012318 (2011).

    Article  ADS  Google Scholar 

  28. C. Simon et al., Eur. Phys. J. D 58, 1 (2010).

    Article  ADS  Google Scholar 

  29. B. Lauritzen et al., Phys. Rev. Lett. 104, 080502 (2010).

    Article  ADS  Google Scholar 

  30. A. Acín, J.I. Cirac, M. Lewenstein, Nat. Phys. 3, 256 (2007).

    Article  Google Scholar 

  31. S. Perseguers, J.I. Cirac, A. Acín, M. Lewenstein, J. Wehr, Phys. Rev. A 77, 022308 (2008).

    Article  ADS  Google Scholar 

  32. Z.-W. Wei, B.-H. Wang, X.-P. Han, Sci. Rep. 3, 1222 (2013).

    ADS  Google Scholar 

  33. M. Cuquet, J. Calsamiglia, Phys. Rev. Lett. 103, 240503 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Cuquet, J. Calsamiglia, Phys. Rev. A 83, 032319 (2011).

    Article  ADS  Google Scholar 

  35. D. Watts, S. Strogatz, Nature 393, 440 (1998).

    Article  ADS  Google Scholar 

  36. A.-L. Barabási, R. Albert, Science 286, 509 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005).

    Article  ADS  Google Scholar 

  38. E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003).

    Article  ADS  Google Scholar 

  39. A.-L. Barabási, Z.N. Oltvai, Nat. Rev. Genet. 5, 101 (2004).

    Article  Google Scholar 

  40. A.-L. Barabási, Z. Dezso, E. Ravasz, S.-H. Yook, Z. Oltvai, AIP Conf. Proc. 661, 1 (2003).

    Article  ADS  Google Scholar 

  41. M.E. Newman, SIAM Rev. 45, 167 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. M. Newman, Networks: An Introduction (Oxford University Press, Inc., 2010).

  43. R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010).

  44. Timeline of web search engines --- Wikipedia, the free encyclopedia (2014), http://en.wikipedia.org/w/index.php?title=Timeline_of_web_search_engines&oldid=616361284.

  45. M. Marchiori, Comput. Netw. ISDN Syst. 29, 1225 (1997).

    Article  Google Scholar 

  46. http://www.worldwidewebsize.com.

  47. A.N. Langville, C.D. Meyer, Internet Math. 1, 335 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  48. C.D. Meyer, Matrix Analysis and Applied Linear Algebra, Vol. 2 (Siam, 2000).

  49. T. Haveliwala, S. Kamvar, The second eigenvalue of the Google matrix, Stanford University Technical Report (2003).

  50. M. Szegedy, Quantum speed-up of Markov chain based algorithms, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004 (2004) pp. 32--41.

  51. D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Quantum walks on graphs, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (ACM, 2001) pp. 50--59.

  52. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

    Article  ADS  MATH  Google Scholar 

  53. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  54. A.-L. Barabási, R. Albert, H. Jeong, Physica A: Stat. Mech. Appl. 281, 69 (2000).

    Article  ADS  Google Scholar 

  55. A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004).

    Article  ADS  Google Scholar 

  56. H. Jeong, P. Mason, A.-L. Barabasi, Z. Oltvai, Nature 411, 41 (2001).

    Article  ADS  Google Scholar 

  57. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000).

    Article  ADS  Google Scholar 

  58. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000).

    Article  ADS  Google Scholar 

  59. D.S. Callaway, M.E. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000).

    Article  ADS  Google Scholar 

  60. A. Vázquez, Y. Moreno, Phys. Rev. E 67, 015101 (2003).

    Article  ADS  Google Scholar 

  61. M. Boguna, D. Krioukov, K. Claffy, Nat. Phys. 5, 74 (2008).

    Article  Google Scholar 

  62. S. Carmi, S. Carter, J. Sun, D. Ben-Avraham, Phys. Rev. Lett. 102, 238702 (2009).

    Article  ADS  Google Scholar 

  63. S.H. Lee, P. Holme, Phys. Rev. Lett. 108, 128701 (2012).

    Article  ADS  Google Scholar 

  64. Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Nature 473, 167 (2011).

    Article  ADS  Google Scholar 

  65. T. Nepusz, T. Vicsek, Nat. Phys. 8, 568 (2012).

    Article  Google Scholar 

  66. V. Nicosia, R. Criado, M. Romance, G. Russo, V. Latora, Sci. Rep. 2, 218 (2012).

    Article  ADS  Google Scholar 

  67. A.-L. Barabási, Philos. Trans. R. Soc. A 371, 20120512 (2013).

    Article  Google Scholar 

  68. A. Reka, H. Jeong, A.-L. Barabasi, Nature 401, 130 (1999).

    Article  ADS  Google Scholar 

  69. B. Bollobás, C. Borgs, J. Chayes, O. Riordan, Directed scale-free graphs, in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2003) pp. 132--139.

  70. A. Hagberg, P. Swart, D.S. Chult, Exploring network structure, dynamics, and function using NetworkX Tech. Rep., Los Alamos National Laboratory (LANL) (2008).

  71. V. Batagelj, A. Mrvar, Pajek datasets, http://vlado.fmf.uni-lj.si/pub/networks/data (2006).

  72. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Science 297, 1551 (2002).

    Article  ADS  Google Scholar 

  73. A.-L. Barabási, E. Ravasz, T. Vicsek, Physica A: Stat. Mech. Appl. 299, 559 (2001).

    Article  ADS  MATH  Google Scholar 

  74. J.D. Noh, Phys. Rev. E 67, 045103 (2003).

    Article  ADS  Google Scholar 

  75. F. Comellas, A. Miralles, Physica A: Stat. Mech. Appl. 388, 2227 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  76. F. Comellas, A. Miralles, J. Phys. A: Math. Theor. 42, 425001 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  77. H.K. Lo, T. Spiller, S. Popescu, Introduction to Quantum Computation and Information (World Scientific Publishing Company, 1998).

  78. D. Donato, L. Laura, S. Leonardi, S. Millozzi, Eur. Phys. J. B 38, 239 (2004).

    Article  ADS  Google Scholar 

  79. G. Pandurangan, P. Raghavan, E. Upfal, Using PageRank to Characterize Web Structure, in Computing and Combinatorics, Vol. 2387 (Springer, 2002) pp. 330--339.

  80. F. de Lima Marquezino, R. Portugal, S. Boettcher, Phys. Rev. A 87, 012329 (2013).

    Article  ADS  Google Scholar 

  81. F. Caruso, arXiv:1312.1832 (2013).

  82. A. Makmal, M. Zhu, D. Manzano, M. Tiersch, H.J. Briegel, arXiv:1309.5253 (2013).

  83. S.E. Venegas-Andraca, Quantum Inf. Process. 11, 1015 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  84. M. Faccin, T. Johnson, J. Biamonte, S. Kais, P. Migdał, Phys. Rev. X 3, 041007 (2013).

    Google Scholar 

  85. B. Kollár, J. Novotny, T. Kiss, I. Jex, arXiv:1404.4509 (2014).

  86. J.D. Whitfield, Reflections in Hilbert Space II: Szegedy's Scheme for Markov Chain Quantization (2012).

  87. S. Garnerone, P. Zanardi, D.A. Lidar, Phys. Rev. Lett. 108, 230506 (2012).

    Article  ADS  Google Scholar 

  88. S. Garnerone, Phys. Rev. A 86, 032342 (2012).

    Article  ADS  Google Scholar 

  89. E. Sánchez-Burillo, J. Duch, J. Gómez-Gardeñes, D. Zueco, Sci. Rep. 2, 605 (2012).

    Article  Google Scholar 

  90. F. Verstraete, M.M. Wolf, J.I. Cirac, Nat. Phys. 5, 633 (2009).

    Article  Google Scholar 

  91. S. Diehl et al., Nat. Phys. 4, 878 (2008).

    Article  Google Scholar 

  92. A.M. Childs, D. Gosset, Z. Webb, Science 339, 791 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  93. A.M. Childs, Phys. Rev. Lett. 102, 180501 (2009).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Paparo.

Additional information

Contribution to the Focus Point “Quantum information and complexity” edited by S. Mancini, G. Marmo, S. Pascazio.

This contribution is based on the talk presented by G.D. Paparo at the workshop Noise Information & Complexity at Quantum Scale at the Ettore Majorana Centre, Erice (Sicily), Italy 6th–12th October 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paparo, G.D., Müller, M., Comellas, F. et al. Quantum Google algorithm. Eur. Phys. J. Plus 129, 150 (2014). https://doi.org/10.1140/epjp/i2014-14150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14150-y

Keywords

Navigation