Skip to main content
Log in

Standard Cosmology extended to include particle creation originated from Universe expansion

Standard Cosmology with particle creation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Standard Cosmological model is extended to include particles created by Universe expansion. Accordingly, the density ρ and pressure p are modified by the adjoint of terms in the form \(\alpha (t)\dot R(t)/R(t)\), \(\beta (t)\dot R(t)/R(t)\). Such expressions are based on results, previously obtained, relative to field quantization in curved space-time for spin 0 , 1/2 , 1 . The model is discussed in general and for special physical configurations. The case p = is solved in the flat space-time case, and is discussed in some special asymptotic cases, leaving, however, the problem of determining α(t), β(t) open. The matter- and radiation-dominated models, analogous to those of the Standard Cosmology, are studied by choosing α(t), β(t) to be constant in time. The two models are integrated in the flat space-time case and both allow a numerical evaluation of the parameter Ω 0c relative to particle creation. Such value lies into the expected range. The results support the expectation that particle production plays an active role in the formulation of the cosmological model. Its importance should, however, be tested also in open and closed models and within a discussion including all kinds of energy contributions in the cosmological Einstein equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Parker, Phys. Rev. Lett. 21, 562 (1968).

    Article  ADS  Google Scholar 

  2. L. Parker, Phys. Rev. 183, 1057 (1969).

    Article  ADS  MATH  Google Scholar 

  3. L. Parker, Phys. Rev. 3, 346 (1971).

    ADS  Google Scholar 

  4. S.A. Fulling, Phys. Rev. D 7, 2850 (1973).

    Article  ADS  Google Scholar 

  5. S.A. Fulling, Aspects of Quantum Field Theory in curved space-time (Cambridge University Press, Cambridge, 1989).

  6. N.D. Birrell, P.C.W. Davies, Quantum fields in curved space-time (Cambridge University Press, Cambridge, 1982).

  7. L. Parker, D. Toms, Quantum Field Theory in Curved Space-time (Cambridge University Press, Cambridge, 2009).

  8. A. Zecca, Adv. Stud. Theor. Phys. 3, 493 (2009).

    MathSciNet  MATH  Google Scholar 

  9. A. Zecca, Adv. Stud. Theor. Phys. 4, 797 (2010).

    MathSciNet  MATH  Google Scholar 

  10. A. Zecca, Adv. Stud. Theor. Phys. 4, 951 (2010).

    MathSciNet  MATH  Google Scholar 

  11. A. Zecca, Separation and solution of spin 1 field equation and particle production in Lemaitre-Tolman-Bondi cosmologies, in Aspects of Todays Cosmology, edited by A. Alfonso-Faus (InTech, 2011) ISBN 978-953-307-626-3.

  12. S. Moradi, Int. J. Theor. Phys. 48, 969 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Prigogine, J. Geheniau, Proc. Natl. Acad. Sci. USA 83, 6245 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  14. I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Gen. Relativ. Gravit. 21, 767 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. I. Prigogine, Int. J. Theor. Phys. 28, 927 (1989).

    Article  MATH  Google Scholar 

  16. J.A.S. Lima, F.E. Silva, R.C. Santos, Class. Quantum Grav. 25, 205006 (2008).

    Article  ADS  Google Scholar 

  17. S. Debnath, A.K. Sanyal, Class. Quantum Grav. 28, 145015 (2011).

    Article  ADS  Google Scholar 

  18. L. Parker, J.Z. Simon, Phys. Rev. D 47, 1339 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  19. E.E. Flanagan, M. Wald, Phys. Rev. D 54, 6293 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  20. V.F. Mukhanov, S. Winitzki, Quantum Effects in Gravity (Cambridge University Press, Cambridge, 2009).

  21. A. Zecca, Adv. Stud. Theor. Phys. 4, 191 (2010).

    Google Scholar 

  22. A. Zecca, Adv. Stud. Theor. Phys. 5, 305 (2011).

    Google Scholar 

  23. S. Weinberg, Cosmology (Oxford University Press, New York, 2008).

  24. S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, New York, 1972).

  25. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, New York, 1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zecca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecca, A. Standard Cosmology extended to include particle creation originated from Universe expansion. Eur. Phys. J. Plus 127, 18 (2012). https://doi.org/10.1140/epjp/i2012-12018-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12018-x

Keywords

Navigation