Skip to main content
Log in

Testing gravitational physics with satellite laser ranging

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Laser ranging, both Lunar (LLR) and Satellite Laser Ranging (SLR), is one of the most accurate techniques to test gravitational physics and Einstein’s theory of General Relativity. Lunar Laser Ranging has provided very accurate tests of both the strong equivalence principle, at the foundations of General Relativity, and of the weak equivalence principle, at the basis of any metric theory of gravity; it has provided strong limits to the values of the so-called PPN (Parametrized Post-Newtonian) parameters, that are used to test the post-Newtonian limit of General Relativity, strong limits to conceivable deviations to the inverse square law for very weak gravity and accurate measurements of the geodetic precession, an effect predicted by General Relativity. Satellite laser ranging has provided strong limits to deviations to the inverse square gravity law, at a different range with respect to LLR, and in particular has given the first direct test of the gravitomagnetic field by measuring the gravitomagnetic shift of the node of a satellite, a frame-dragging effect also called Lense-Thirring effect. Here, after an introduction to gravitomagnetism and frame-dragging, we describe the latest results in measuring the Lense-Thirring effect using the LAGEOS satellites and the latest gravity field models obtained by the space mission GRACE. Finally, we describe an update of the LARES (LAser RElativity Satellite) mission. LARES is planned for launch in 2011 to further improve the accuracy in the measurement of frame-dragging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

  2. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

  3. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, NJ, 1995).

  4. C.M. Will, Theory and Experiment in Gravitational Physics, 2nd edition (Cambridge University Press, Cambridge, UK, 1993).

  5. C.M. Will, Living Rev. Rel. 9, 3 (2006).

    Google Scholar 

  6. A. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  7. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  8. S. Perlmutter, Phys. Today 56, 53 (2003).

    Article  Google Scholar 

  9. R.R. Caldwell, Phys. World 17, 37 (2004).

    Google Scholar 

  10. E. Adelberger, B. Heckel, C.D. Hoyle, Phys. World 18, 41 (2005).

    Google Scholar 

  11. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Nature 393, 763 (1998).

    Article  ADS  Google Scholar 

  12. G. Dvali, Filtering Gravity: Modification at Large Distances? in Proceedings of Nobel Symposium 127, Sigtuna, Sweden, 2003, edited by U. Danielsson, A. Goobar, B. Nilsson (World Scientific, Singapore, 2005) pp. 92-98

  13. I. Ciufolini, Nature 449, 41 (2007).

    Article  ADS  Google Scholar 

  14. I. Ciufolini, E.C. Pavlis, Nature 431, 958 (2004).

    Article  ADS  Google Scholar 

  15. I. Ciufolini, E.C. Pavlis, R. Peron, New Astron. 11, 527 (2006).

    Article  ADS  Google Scholar 

  16. J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the Frame-Dragging Effect with Satellite Laser Ranging, in 16th International Workshop on Laser Ranging, 13-17 October 2008, Poznan, Poland, available at http://cddis.gsfc.nasa.gov/lw16/docs/papers/sci_3_Ries_p.pdf and http://cddis.gsfc.nasa.gov/lw16/docs/presentations/sci\_3\_Ries.pdf

  17. A. Einstein, Letter to Ernst Mach. Zurich, 25 June 1913, in ref. mtw, p. 544

  18. E. Mach, Die Mechanik in Ihrer Entwicklung Historisch Kritisch-Dargestellt (Brockhaus, Leipzig, 1912).

  19. J. Barbour, H. Pfister (Editors), Mach’s Principle. From Newton’s Bucket to Quantum Gravity (Birkhauser, Boston, 1995).

  20. C. Schmid, Phys. Rev. D 74, 044031 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  21. B. Friedländer, I. Friedländer, Absolute und Relative Bewegung? (Simion-Verlag, Berlin, 1896).

  22. A. Föppl, Sitzb. Bayer. Akad. Wiss. 34, 5 (1904).

    Google Scholar 

  23. A. Föppl, Phys. Z. 5, 416 (1904).

    Google Scholar 

  24. A. Föppl, Sitzb. Bayer. Akad. Wiss. 34, 383 (1904).

    Google Scholar 

  25. W. de Sitter, Mon. Not. R. Astron. Soc. 76, 699 (1916).

    ADS  Google Scholar 

  26. J. Lense, H. Thirring, Phys. Z. 19, 156 (1918).

    Google Scholar 

  27. B. Mashhoon, F.W. Hehl, D.S. Theiss, Gen. Relativ. Gravit. 16, 711 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  28. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 3rd revision, English edition (Pergamon, London, 1971).

  29. Ya.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics, Vol. I, Stars and Relativity (University of Chicago Press, Chicago, 1971).

  30. I. Ciufolini, F. Ricci, Class. Quantum Grav. 19, 3863 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. I. Ciufolini, F. Ricci, Class. Quantum Grav. 19, 3875 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. I. Ciufolini, F. Ricci, S. Kopekin, B. Mashhoon, Phys. Lett. A 308, 101 (2003).

    Article  ADS  Google Scholar 

  33. G.E. Pugh, Proposal for a Satellite Test of the Coriolis Prediction of General Relativity, Weapons Systems Evaluation Group Research Memorandum N. 11 (The Pentagon, Washington, 1959).

  34. L.I. Schiff, Proc. Nat. Acad. Sci. 46, 871 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. L.I. Schiff, Phys. Rev. Lett. 4, 215 (1960).

    Article  ADS  Google Scholar 

  36. J.M. Bardeen, J.A. Petterson, Astrophys. J. 195, 65 (1975).

    Article  ADS  Google Scholar 

  37. K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane Paradigm (Yale University Press, NewHaven, 1986).

  38. R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. G. Schäfer, J. Gen. Relativ. Gravit. 36, 2223 (2004).

    Article  ADS  MATH  Google Scholar 

  40. I. Ciufolini, Class. Quantum Grav. 11, 73 (1994).

    Article  ADS  Google Scholar 

  41. I. Ciufolini, New Astron. 15, 332 (2010).

    Article  ADS  Google Scholar 

  42. N. Ashby, B. Shahid-Saless, Phys. Rev. D 42, 1118 (1990).

    Article  ADS  Google Scholar 

  43. R.F. O’Connell, Class. Quantum Grav. 22, 3815 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. B.M. Barker, R.F. O’Connel, Gen. Relativ. Gravit. 11, 149 (1979).

    Article  ADS  Google Scholar 

  45. A.R. Khan, R.F. O’Connell, Nature 261, 480 (1976).

    Article  ADS  Google Scholar 

  46. T.W. Murphy Jr., K. Nordtvedt, S.G. Turyshev, Phys. Rev. Lett. 98, 071102 (2007).

    Article  ADS  Google Scholar 

  47. S.M. Kopeikin, Phys. Rev. Lett. 98, 229001 (2007) Comment on ref. mnt

    Article  ADS  Google Scholar 

  48. T.W. Murphy Jr., K. Nordtvedt, S.G. Turyshev, Phys. Rev. Lett. 98, 229002 (2007).

    Article  ADS  Google Scholar 

  49. I. Ciufolini, Phys. Rev. Lett. 56, 278 (1986).

    Article  ADS  Google Scholar 

  50. I. Ciufolini, Int. J. Mod. Phys. A 4, 3083 (1989) see also ci6

    Article  ADS  Google Scholar 

  51. I. Ciufolini, Nuovo Cimento A 109, 1709 (1996).

    Article  ADS  Google Scholar 

  52. I. Ciufolini, F. Chieppa, D. Lucchesi, F. Vespe, Class. Quantum Gravit. 14, 2701 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. I. Ciufolini, D. Lucchesi, F. Vespe, F. Chieppa, Europhys. Lett. 39, 359 (1997).

    Article  ADS  Google Scholar 

  54. I. Ciufolini et al., Nuovo Cimento A 109, 575 (1996).

    Article  ADS  Google Scholar 

  55. I. Ciufolini, E.C. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Perez-Mercader, Science 279, 2100 (1998).

    Article  ADS  Google Scholar 

  56. B. Tapley, J.C. Ries, R.J. Eanes, M.M. Watkins, NASA-ASI Study on LAGEOS III, CSR-UT publication n. CSR-89-3, Austin, Texas (1989).

  57. S.C. Cohen, P.J. Dunn (Editors), J. Geophys. Res. 90, 9215 (1985).

    Article  ADS  Google Scholar 

  58. P. Bender, C.C. Goad, The use of satellites for geodesy and geodynamics, in Proceedings of the Second International Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics, Vol. II, edited by G. Veis, E. Livieratos (National Technical University of Athens, 1979) p. 145

  59. Ch. Reigber, P. Schwintzer, K.-H. Neumayer, F. Barthelmes, R. König, Ch. Förste, G. Balmino, R. Biancale, J.-M. Lemoine, S. Loyer, S. Bruinsma, F. Perosanz, T. Fayard, Adv. Space Res. 31, 1883 (2003).

    Article  ADS  Google Scholar 

  60. C. Reigber, R. Schmidt, F. Flechtner, R. Koenig, U. Meyer, K.H. Neumayer, P. Schwintzer, S.Y. Zhu, J. Geodynamics 39, 1 (2005) The EIGEN-GRACE02S gravity field coefficients and their calibrated errors are available at http://op.gfz-potsdam.de/grace/index_GRACE.html

    Article  ADS  Google Scholar 

  61. C. Förste, F. Flechtner, R. Schmidt, R. Stubenvoll, M. Rothacher, J. Kusche, K.-H. Neumayer, R. Biancale, J.-M. Lemoine, F. Barthelmes, J. Bruinsma, R. Koenig, U. Meyer, EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. General Assembly European Geosciences Union (Vienna, Austria 2008), in Geophysical Research Abstracts, 10, No. EGU2008-A-06944 (2008).

  62. C. Förste, R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. Konig, H. Neumayer, R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, S. Esselborn, J. Geodesy 82, 331 (2008).

    Article  ADS  Google Scholar 

  63. C. Förste, F. Flechtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. Kõnig, K.H. Neumayer, M. Rothacher, Ch. Reigber, R. Biancale, S. Bruinsma, J.-M. Lemoine, J.C. Raimondo, A New High Resolution Global Gravity Field Model Derived From Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data, in EGU General Assembly Vienna, Austria, April 2005, 24-29 (2005).

  64. B. Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, S. Poole, The GGM03 Mean Earth Gravity Model from GRACE, Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract G42A-03 (2007).

  65. T. Mayer-Guerr, A. Eicker, K.-H. Ilk, ITG-Grace02s: A GRACE Gravity Field Derived from Short Arcs of the Satellites Orbit, in Proceedings of the 1st International Symposium of the International Gravity Field Service ``Gravity Field of the Earth’’, Istanbul (2007).

  66. T. Mayer-Guerr, ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn, presentation at GSTM+SPP, Potsdam, 15-17 Oct. 2007

  67. The JEM models were provided by JPL-Caltech

  68. International Earth Rotation Service (IERS) Annual Report, 1996. Observatoire de Paris, Paris (1997).

  69. D.P. Rubincam, J. Geophys. Res. 93, 13803 (1988).

    Article  ADS  Google Scholar 

  70. D.P. Rubincam, J. Geophys. Res. 95, 4881 (1990).

    Article  ADS  Google Scholar 

  71. D.P. Rubincam, A. Mallama, J. Geophys. Res. 100, 20285 (1995).

    Article  ADS  Google Scholar 

  72. C.F. Martin, D.P. Rubincam, J. Geophys. Res. 101, 3215 (1996).

    Article  ADS  Google Scholar 

  73. J.I. Andrès et al., J. Geophys. Res. 109, B06403 (2004).

    Article  Google Scholar 

  74. I. Ciufolini, E.C. Pavlis, New Astron. 10, 636 (2005).

    Article  ADS  Google Scholar 

  75. R.S. Gross, J. Geophys. Res. 101, 8729 (1996).

    Article  ADS  Google Scholar 

  76. D.E. Pavlis, GEODYN operations manuals, contractor report, Raytheon, ITSS, Landover MD (1998).

  77. I. Ciufolini, E.C. Pavlis, J. Ries, R. Koenig, G. Sindoni, A. Paolozzi, H. Newmayer, Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS satellites and GRACE Earth Gravity Models, in John Archibald Wheleer and General Relativity, edited by I. Ciufolini, R. Matzner (Springer Verlag, 2010) pp. 371--434

  78. I. Ciufolini, Frame-dragging and its measurement, in Gravitation: from Hubble Length to the Planck Length, Proceedings of the Ist SIGRAV School on General Relativity and Gravitation, Frascati, Rome, September 2002 (IOP, 2005) pp. 27-69

  79. I. Ciufolini, Theory and Experiments in General Relativity and other Metric Theories, PhD Dissertation, University of Texas, Austin (Ann Arbor Publishers, Michigan, 1984).

  80. G.E. Peterson, Estimation of the Lense-Thirring Precession Using Laser-Ranged SAtellites, Ph. Dissertation (University of Texas, Austin, 1997).

  81. J.C. Ries, R.J. Eanes, B.D. Tapley, Lense-Thirring Precession Determination from Laser Ranging to Artificial Satellites, in Nonlinear Gravitodynamics, the Lense-Thirring Effect, Proceedings III William Fairbank Meeting (World Scientific, Singapore, 2003) pp. 201-211

  82. J.C. Ries, R.J. Eanes, B.D. Tapley, G.E. Peterson, Prospects for an improved Lense-Thirring test with SLR and the GRACE gravity mission, in Toward Millimeter Accuracy Proceedings of the 13th International Laser Ranging Workshop, edited by R. Noomen, S. Klosko, C. Noll, M. Pearlman (NASA CP 2003-212248, NASA Goddard, Greenbelt, MD, 2003).

  83. E.C. Pavlis, Geodetic Contributions to Gravitational Experiments in Space, in Recent Developments in General Relativity, Genoa 2000, edited by R. Cianci (Springer-Verlag, Milan, 2002) pp. 217-233

  84. D.P. Rubincam, Celest. Mech. 15, 21 (1977).

    Article  ADS  Google Scholar 

  85. L. Cugusi, E. Proverbio, Astron. Astrophys. 69, 321 (1978).

    ADS  Google Scholar 

  86. H. Yilmaz, Bull. Am. Phys. Soc. 4, 65 (1959).

    Google Scholar 

  87. R.A. Van Patten, C.W.F. Everitt, Phys. Rev. Lett. 36, 629 (1976).

    Article  ADS  Google Scholar 

  88. R.J. Eanes, A study of temporal variations in Earth’s gravitational field using Lageos-1 laser ranging observations, Ph. Dissertation (University of Texas, Austin, 1995).

  89. D.M. Lucchesi, Planet. Space Sci. 49, 447 (2001).

    Article  ADS  Google Scholar 

  90. D.M. Lucchesi, Planet. Space Sci. 50, 1067 (2002).

    Article  ADS  Google Scholar 

  91. E.C. Pavlis, L. Iorio, Int. J. Mod. Phys. D 11, 599 (2002).

    Article  ADS  Google Scholar 

  92. W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966).

  93. I. Ciufolini, A. Paolozzi, LARES, Laser Relativity Satellite, for the study of the Earth gravitational field and general relativity measurement, Phase A Report for ASI, 1998

  94. J.C. Ries, Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite, Ph. Dissertation (University of Texas, Austin, 1989).

  95. Ch. Reigber, F. Flechtner, R. Koenig, U. Meyer, K. Neumayer, R. Schmidt, P. Schwintzer, S. Zhu, GRACE Orbit and Gravity Field Recovery at GFZ Potsdam - First Experiences and Perspectives, Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-03 (2002).

  96. B.D. Tapley, The GRACE Mission: Status and Performance Assessment, Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-01 (2002).

  97. M.M. Watkins, D. Yuan, W. Bertiger, G. Kruizinga, L. Romans, S. Wu, GRACE Gravity Field Results from JPL, Eos. Trans. AGU, 83(47), Fall Meet. Suppl., Abstract G12B-02 (2002).

  98. A. Paolozzi, Private communication (2004).

  99. J. Ries, Private communication (2005).

  100. L. Iorio, New Astron. 10, 616 (2005).

    Article  ADS  Google Scholar 

  101. I. Ciufolini, On the Orbit of the LARES Satellite, arXiv:gr-qc/0609081 (2006).

  102. I. Ciufolini, A. Paolozzi, E.C. Pavlis, J. Ries, R. Koenig, R. Matzner, G. Sindoni, The LARES Space Experiment: LARES Orbit, Error Analysis and Satellite Structure, in John Archibald Wheleer and General Relativity, edited by I. Ciufolini, R. Matzner (Springer Verlag, 2010) pp. 467--492

  103. I. Ciufolini, D.G. Currie, A. Paolozzi, E.C. Pavlis, LARES/WEBERSAT Frame-dragging and fundamental physics, in Frontier Science 2004, Physics and Astrophysics in Space, Frascati, 14-19 June (2004) pp. 499-512

  104. A. Paolozzi, I. Ciufolini, A. Lucantoni, D. Arnold, Optical Design of LARES Satellite, XX AIDAA Congress Milano, Italy, June 29-July 3, 2009

  105. A. Paolozzi, I. Ciufolini, C. Vendittozzi, I. Peroni, Mechanical Design of LARES Satellite, XX AIDAA Congress Milano, Italy, June 29-July 3, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Ciufolini.

Additional information

Dedicated to Nicola Cabibbo one of the masters of theoretical physics of the XX century

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciufolini, I., Paolozzi, A., Pavlis, E.C. et al. Testing gravitational physics with satellite laser ranging. Eur. Phys. J. Plus 126, 72 (2011). https://doi.org/10.1140/epjp/i2011-11072-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11072-2

Keywords

Navigation