Skip to main content
Log in

How do mosquito eggs self-assemble on the water surface?

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This work reports a detailed numerical study of the behavior of ellipsoid-shaped particles adsorbed at fluid interfaces. Former experiments have shown that micrometer-sized prolate ellipsoids aggregate under the action of strong and long-ranged capillary interactions. The latter are due to nonplanar contact lines and to the resulting deformations of the interface in the vicinity of the trapped objects. We first consider the case of a single ellipsoid and examine in detail the influence of contact angle and ellipsoid aspect ratio on interfacial distortions. We then focus on two contacting ellipsoids and study the optimum packing configuration depending on their size and/or aspect ratio mismatch. We thoroughly explore the variety of contact configurations between both ellipsoids and provide corresponding energy maps. Whereas the side-by-side configuration is the most stable state for identical ellipsoids, we find that the mismatched pair adopts an “arrow” configuration in which a finite angle exists between the particles long axes. Such arrows are actually seen in experiments with micron-sized ellipsoids and similarly with millimeter-sized mosquito eggs. These results complement our previous work (J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)) and highlight the importance of geometrical factors to explain the morphology of aggregated structures at fluid interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courtesy of J.F. Franetich, INSERM U511 - Université Paris 6, Faculté de médecine La Pitié-Salpêtrière

  2. A zoomed-in view of a mosquito egg reveals the presence of two side floats (anchored along the egg long axis) which may prevent it from sinking

  3. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980)

    Article  ADS  Google Scholar 

  4. K. Zahn, R. Lenke, G. Maret, Phys. Rev. Lett. 82, 2721 (1999)

    Article  ADS  Google Scholar 

  5. S. Reynaert, P. Moldenaers, J. Vermant, Langmuir 22, 4936 (2006)

    Article  Google Scholar 

  6. S.U. Pickering, J. Chem. Soc. 91, 2001 (1907)

    Article  Google Scholar 

  7. R. Aveyard, B.P. Binks, J.H. Clint, Adv. Colloid Interface Sci. 100-102, 503 (2003)

    Article  Google Scholar 

  8. B.P. Binks, Phys. Chem. Chem. Phys. 9, 6298 (2007)

    Article  Google Scholar 

  9. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)

    Article  ADS  Google Scholar 

  10. C. Zeng, H. Bissig, A.D. Dinsmore, Solid State Commun. 139, 547 (2006)

    Article  ADS  Google Scholar 

  11. M. Kleman, O.D. Lavrentovich, Soft Matter Physics (Springer, New York, 2003)

  12. M.M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949)

    Article  ADS  MATH  Google Scholar 

  13. D.Y. Chan, J.D. Henry, L.R. White, J. Colloid Interface Sci. 79, 410 (1981)

    Article  Google Scholar 

  14. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, K. Nagayama, J. Colloid Interface Sci. 157, 100 (1993)

    Article  Google Scholar 

  15. C. Allain, M. Cloitre, J. Colloid Interface Sci. 157, 261 (1993) 269

    Article  Google Scholar 

  16. D. Vella, L. Mahadevan, Am. J. Phys. 73, 814 (2005)

    Article  ADS  Google Scholar 

  17. R. Aveyard et al., Phys. Rev. Lett. 88, 246102 (2002)

    Article  ADS  Google Scholar 

  18. M.G. Nikolaides, A.R. Bausch, M.F. Hsu, A.D. Dinsmore, M. Brenner, C. Gay, D.A. Weitz, Nature 420, 299 (2002)

    Article  ADS  Google Scholar 

  19. T.S. Horozov, R. Aveyard, J.H. Clint, B.P. Binks, Langmuir 19, 2822 (2003)

    Article  Google Scholar 

  20. M. Megens, J. Aizenberg, Nature (London) 424, 1014 (2003)

    Article  ADS  Google Scholar 

  21. L. Foret, A. Würger, Phys. Rev. Lett. 92, 058302 (2004)

    Article  ADS  Google Scholar 

  22. M. Oettel, A. Dominguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)

    Article  ADS  Google Scholar 

  23. A. Würger, L. Foret, J. Phys. Chem. B 109, 16435 (2005)

    Article  Google Scholar 

  24. M. Oettel, A. Dominguer, S. Dietrich, J. Phys.: Condens. Matter 17, L337 (2005)

    Article  ADS  Google Scholar 

  25. K.D. Danov, P.A. Ktalchevsky, M.P. Boneva, Langmuir 22, 2653 (2006)

    Article  Google Scholar 

  26. M.E. Leunissen, A. van Blaaderen, A.D. Hollingsworth, M.T. Sullivan, P.M. Chaikin, Proc. Natl. Acad. Sci. U.S.A. 104, 2585 (2007)

    Article  ADS  Google Scholar 

  27. M.P. Boneva, K.D. Danov, N.C. Christov, P.A. Kralchevsky, Langmuir 25, 9129 (2009)

    Article  Google Scholar 

  28. K.P. Velikov, F. Durst, O.D. Velev, Langmuir 14, 1148 (1998)

    Article  Google Scholar 

  29. P.A. Kralchevsky, K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000)

    Article  Google Scholar 

  30. K.D. Danov, B. Pouligny, P.A. Kralchevsky, Langmuir 17, 6599 (2001)

    Article  Google Scholar 

  31. R. Di Leonardo, F. Saglimbeni, G. Ruocco, Phys. Rev. Lett. 100, 106103 (2008)

    Article  ADS  Google Scholar 

  32. D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)

    Article  ADS  Google Scholar 

  33. P.A. Kralchevsky, N.D. Denkov, K.D. Danov, Langmuir 17, 7694 (2001)

    Article  Google Scholar 

  34. J.-B. Fournier, P. Galatola, Phys. Rev. E 65, 031601 (2002)

    Article  ADS  Google Scholar 

  35. K.D. Danov, P.A. Kralchevsky, B.N. Naydenov, G. Brenn, J. Colloid Interface Sci. 287, 121 (2005)

    Article  Google Scholar 

  36. J. Lucassen, Colloids Surf. 65, 131 (1992)

    Article  Google Scholar 

  37. A.B.D. Brown, C.G. Smith, A.R. Rennie, Phys. Rev. E 62, 951 (2000)

    Article  ADS  Google Scholar 

  38. E.A. van Nierop, M.A. Stijnman, S. Hilgenfeldt, Europhys. Lett. 72, 671 (2005)

    Article  ADS  Google Scholar 

  39. J.C. Loudet, A.M. Alsayed, J. Zhang, A.G. Yodh, Phys. Rev. Lett. 94, 018301 (2005)

    Article  ADS  Google Scholar 

  40. J.C. Loudet, A.G. Yodh, B. Pouligny, Phys. Rev. Lett. 97, 018304 (2006)

    Article  ADS  Google Scholar 

  41. H. Lehle, E. Noruzifar, M. Oettel, Eur. Phys. J. E 26, 151 (2008)

    Article  Google Scholar 

  42. E.P. Lewandowski, J.A. Bernate, P.C. Searson, K.J. Stebe, Langmuir 24, 9302 (2008)

    Article  Google Scholar 

  43. E.P. Lewandowski, J.A. Bernate, A. Tseng, P.C. Searson, K.J. Stebe, Soft Matter 5, 886 (2009)

    Article  ADS  Google Scholar 

  44. J.C. Loudet, B. Pouligny, Europhys. Lett. 85, 28003 (2009)

    Article  ADS  Google Scholar 

  45. B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)

    Article  Google Scholar 

  46. M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)

    Article  Google Scholar 

  47. J.A. Champion, Y.K. Katare, S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 104, 11901 (2007)

    Article  ADS  Google Scholar 

  48. K.J. Lee, J. Yoon, J. Lahann, Curr. Opin. Colloid Interface Sci. 16, 195 (2011)

    Article  Google Scholar 

  49. S. Sacanna, D.J. Pine, Curr. Opin. Colloid Interface Sci. 16, 96 (2011)

    Article  Google Scholar 

  50. D.B. Wolfe, A. Snead, C. Mao, N.B. Bowden, G.M. Whitesides, Langmuir 19, 2206 (2003)

    Article  Google Scholar 

  51. K.J. Stebe, E. Lewandowski, M. Ghosh, Science 325, 159 (2009)

    Article  Google Scholar 

  52. A. Dominguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)

    Article  ADS  Google Scholar 

  53. R. Finn, Equilibrium Capillary Surfaces (Springer-Verlag, 1986)

  54. C. Pozrikidis, Boundary Element Methods (Chapman & Hall/CRC, 2002)

  55. In our model, the assumption of small interface slopes starts to break down at the ellipsoid tips for $k>6$ and $\theta_c$ close to its maximum value. Indeed, $|\nabla u_c|>0.3$, which is no longer negligible with respect to unity. The full nonlinear Young-Laplace equation of capillarity would be required for more precise computations

  56. The darker regions within the dashed elliptical curve in fig. fig2a are due to (inevitable) unwrapping phase errors (see ghiglia,robinson). The latter occur because of a complex interference pattern (in this region only) combining reflections coming from both solid-air and solid-water interfaces

  57. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping (John Wiley & Sons, 1998)

  58. D.W. Robinson, G.T. Reid, Interferogram Analysis (Institute of Physics Publishing, 1995)

  59. J. Yang, Felicity R.A.J. Rose, N. Gadegaard, M.R. Alexander, Langmuir 25, 2567 (2009)

    Article  Google Scholar 

  60. W. Chen, S. Tan, T.-K. Ng, W.T. Ford, P. Tong, Phys. Rev. Lett. 95, 218301 (2005)

    Article  ADS  Google Scholar 

  61. W. Chen, S. Tan, Z. Huang, T.-K. Ng, W.T. Ford, P. Tong, Phys. Rev. E 74, 021406 (2006)

    Article  ADS  Google Scholar 

  62. In the energy maps of fig. umaps, the typical numerical error for the energy is about $4\cdot10^6k_BT$. As mentioned in the text, this means that shallow wells or hills in the map are not significant or physically relevant. The amplitude of the numerical error is mainly due to the coarse sampling in $\psi_2$

  63. A typical calculation for an ellipsoids pair takes about several minutes to converge on our old DIGITAL AlphaServer DS20 500MHz machine

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Loudet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loudet, J.C., Pouligny, B. How do mosquito eggs self-assemble on the water surface?. Eur. Phys. J. E 34, 76 (2011). https://doi.org/10.1140/epje/i2011-11076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11076-9

Keywords

Navigation