The European Physical Journal E

, Volume 23, Issue 4, pp 355–365

Phase behavior of a suspension of hard spherocylinders plus ideal polymer chains

Regular Article

DOI: 10.1140/epje/i2007-10197-0

Cite this article as:
Tuinier, R., Taniguchi, T. & Wensink, H.H. Eur. Phys. J. E (2007) 23: 355. doi:10.1140/epje/i2007-10197-0


We study isotropic-isotropic and isotropic-nematic phase transitions of fluid mixtures containing hard spherocylinders (HSC) and added non-adsorbing ideal polymer chains using scaled particle theory (SPT). First, we investigate isotropic-nematic (I -N phase coexistence using SPT in the absence of polymer. We compare the results obtained using a Gaussian form of the orientational distribution function (ODF) to minimize the free energy versus minimizing numerically. We find that formal numerical minimization gives results that are much closer to computer simulation results. In order to describe mixtures of HSC plus ideal chains we studied the depletion of ideal chains around a HSC. We analyze the density profiles of ideal chains near a hard cylinder and find the depletion thickness δ is a function of the ratio of the polymer's radius of gyration Rg and the cylinder radius Rc. Our results are compared with a common approximation in which the depletion thickness is taken equal to the radius of gyration of the polymer chain. We incorporate the correct depletion thickness into SPT and find that for Rg/Rc < 1.56 using ideal chains gives phase transitions at smaller polymer concentrations, whereas for Rg/Rc > 1.56 , which is a common experimental situation, the phase transitions are found at larger polymer concentrations with respect to δ = Rg . The differences are significant, especially for RgRc , so we can conclude it is essential to take into account the properties of ideal polymer chains and the resulting depletion near a cylinder. Finally, we present phase diagrams for rod-polymer mixtures which could be realized under experimental conditions.


61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling82.70.Dd Colloids

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Festkörperforschung, Weiche MaterieForschungszentrum JülichJülichGermany
  2. 2.Polymer Science and Engineering, Faculty of EngineeringYamagata UniversityYonezawaJapan
  3. 3.Institut für Theoretische Physik IIHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany