Skip to main content
Log in

Autoionization following nanoplasma formation in atomic and molecular clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, M.D. Perry, Phys. Rev. A 53, 3379 (1996)

    Article  ADS  Google Scholar 

  2. T. Laarmann et al., Phys. Rev. Lett. 95, 063402 (2005)

    Article  ADS  Google Scholar 

  3. C. Bostedt et al., Phys. Rev. Lett. 100, 133401 (2008)

    Article  ADS  Google Scholar 

  4. M. Hoener, C. Bostedt, H. Thomas, L. Landt, E. Eremina, H. Wabnitz, T. Laarmann, R. Treusch, A.R.B. de Castro, T. Moeller, J. Phys. B 41, 181001 (2008)

    Article  ADS  Google Scholar 

  5. T. Tachibana et al., Sci. Rep. 5, 10977 (2015)

    Article  ADS  Google Scholar 

  6. M. Sivis, C. Ropers, Phys. Rev. Lett. 111, 085001 (2013)

    Article  ADS  Google Scholar 

  7. K. Ostrikov, E.C. Neyts, M. Meyyappan, Adv. Phys. 62, 113 (2013)

    Article  Google Scholar 

  8. D.D. Hickstein et al., Phys. Rev. Lett. 112, 115004 (2014)

    Article  ADS  Google Scholar 

  9. B.F. Murphy et al., Nat. Commun. 5, 4281 (2014)

    ADS  Google Scholar 

  10. U. Saalmann, C. Siedschlag, J.M. Rost, J. Phys. B 39, R39 (2006)

    Article  ADS  Google Scholar 

  11. T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)

    Article  ADS  Google Scholar 

  12. B. Schütte, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 073003 (2014)

    Article  ADS  Google Scholar 

  13. B. Schütte, F. Campi, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 253401 (2014)

    Article  ADS  Google Scholar 

  14. B. Schütte, T. Oelze, M. Krikunova, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, New J. Phys. 17, 033043 (2015)

    Article  ADS  Google Scholar 

  15. T. Ditmire, T. Donnelly, R.W. Falcone, M.D. Perry, Phys. Rev. Lett. 75, 3122 (1995)

    Article  ADS  Google Scholar 

  16. L. Schroedter et al., Phys. Rev. Lett. 112, 183401 (2014)

    Article  ADS  Google Scholar 

  17. B. Schütte, J. Lahl, T. Oelze, M. Krikunova, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 114, 123002 (2015)

    Article  ADS  Google Scholar 

  18. B. Schütte, M.J.J. Vrakking, A. Rouzée, J. Phys.: Conf. Ser. 635, 102005 (2015)

    ADS  Google Scholar 

  19. B. Schütte, M. Arbeiter, T. Fennel, G. Jabbari, A.I. Kuleff, M.J.J. Vrakking, A. Rouzée, Nat. Commun. 6, 8596 (2015)

    Article  ADS  Google Scholar 

  20. B. Schütte, M. Arbeiter, T. Fennel, G. Jabbari, A.I. Kuleff, M.J.J. Vrakking, A. Rouzée, J. Phys.: Conf. Ser. 635, 012025 (2015)

    ADS  Google Scholar 

  21. G. Gademann, F. Plé, P.M. Paul, M.J.J. Vrakking, Opt. Express 19, 24922 (2011)

    Article  ADS  Google Scholar 

  22. O.F. Hagena, W. Obert, J. Chem. Phys. 56, 1793 (1972)

    Article  ADS  Google Scholar 

  23. R.A. Smith, T. Ditmire, J.W.G. Tisch, Rev. Sci. Instrum. 69, 3798 (1998)

    Article  ADS  Google Scholar 

  24. A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)

    Article  ADS  Google Scholar 

  25. M.J.J. Vrakking, Rev. Sci. Instrum. 72, 4084 (2001)

    Article  ADS  Google Scholar 

  26. U. Frühling et al., Nature Photon. 3, 523 (2009)

    Article  ADS  Google Scholar 

  27. B. Schütte, U. Frühling, M. Wieland, A. Azima, M. Drescher, Opt. Express 19, 18833 (2011)

    Article  ADS  Google Scholar 

  28. J. Hebling, G. Almási, I.Z. Kozma, J. Kuhl, Opt. Express 10, 1161 (2002)

    Article  ADS  Google Scholar 

  29. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  30. R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Phys. Rev. Lett. 59, 1092 (1987)

    Article  ADS  Google Scholar 

  31. Y.L. Shao, T. Ditmire, J.W.G. Tisch, E. Springate, J.P. Marangos, M.H.R. Hutchinson, Phys. Rev. Lett. 77, 3343 (1996)

    Article  ADS  Google Scholar 

  32. V. Kumarappan, M. Krishnamurthy, D. Mathur, Phys. Rev. A 66, 033203 (2002)

    Article  ADS  Google Scholar 

  33. E. Springate, S.A. Aseyev, S. Zamith, M.J.J. Vrakking, Phys. Rev. A 68, 053201 (2003)

    Article  ADS  Google Scholar 

  34. G.M. Lawrence, Phys. Rev. A 2, 397 (1970)

    Article  ADS  Google Scholar 

  35. P.M. Dehmer, J. Berkowitz, W.A. Chupka, J. Chem. Phys. 59, 5777 (1973)

    Article  ADS  Google Scholar 

  36. P.M. Dehmer, W.L. Luken, W.A. Chupka, J. Chem. Phys. 67, 195 (1977)

    Article  ADS  Google Scholar 

  37. R. Feifel, J.H.D. Eland, D. Edvardsson, J. Chem. Phys. 122, 144308 (2005)

    Article  ADS  Google Scholar 

  38. A.S. Sandhu et al., Science 322, 1081 (2008)

    Article  ADS  Google Scholar 

  39. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.1), National Institute of Standards and Technology, Gaithersburg, MD (2013), Available: http://physics.nist.gov/asd (2014, September 8)

  40. T. Fennel, L. Ramunno, T. Brabec, Phys. Rev. Lett. 99, 233401 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schütte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütte, B., Lahl, J., Oelze, T. et al. Autoionization following nanoplasma formation in atomic and molecular clusters. Eur. Phys. J. D 70, 115 (2016). https://doi.org/10.1140/epjd/e2016-60727-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60727-3

Keywords

Navigation