Skip to main content
Log in

Theoretical study of the thermally induced structural fluctuations in sub-nanometre size gold clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A reactive potential model and the classical molecular dynamics method (RMD) have been used to study the structure and energetics of sub-nanometre size gold clusters through well-known structural models reported in the literature for AuN, with N = 19, 20 and 21 atoms. After several simulated-annealing simulations for temperatures up to 1500 K, the Au N clusters clearly evolve to well-defined structures at room temperature. For the studied gold clusters, the low-lying structures are single- and double-icosahedra with mobile atoms on the surface, in agreement with experimental results on sub-nanometre size gold clusters exhibiting shape oscillations at room temperature and also with those involved in the design of molecules based on gold superatoms [J.-I. Nishigaki, K. Koyasu, T. Tsukuda, Chem. Rec. 14, 897 (2014)]. The evolution of the structural stability of the Au N clusters under exceptional thermal conditions is analysed by comparing the size and temperature variations of the centrosymmetry parameter and the potential energy. A key understanding of the various possible structural changes undergone by these tiny particles is thus developed. The usefulness of the RMD to study nanometre or sub-nanometre size gold clusters is shown.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Haruta, Relevance of Metal Nanoclusters Size Control in Gold(0) Catalytic Chemistry, 1st edn. (Elsevier, Amsterdam, 2008), Chap. 9, pp. 183–199

  2. L.M. Molina, J.A. Alonso, J. Phys. Chem. C 111, 6668 (2007)

    Article  Google Scholar 

  3. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)

    Article  Google Scholar 

  4. Y. Lu, W. Chen, Chem. Soc. Rev. 41, 3594 (2012)

    Article  Google Scholar 

  5. F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  6. T. Li, S. Yin, Y. Ji, B. Wang, G. Wang, J. Zhao, Phys. Lett. A 267, 403 (2000)

    Article  ADS  Google Scholar 

  7. I.L. Garzón, A. Posada-Amarillas, Phys. Rev. B 54, 11796 (1996)

    Article  ADS  Google Scholar 

  8. C.L. Cleveland, U. Landman, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Z. Phys. D 40, 503 (1997)

    Article  ADS  Google Scholar 

  9. M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993)

    Article  Google Scholar 

  10. V. Rosato, M. Guillope, B. Legrand, Philos. Mag. A 59, 321 (1989)

    Article  ADS  Google Scholar 

  11. P. Pyykko, Chem. Soc. Rev. 37, 1967 (2008)

    Article  Google Scholar 

  12. A.H. Larsen, J. Kleis, K.S. Thygesen, J.K. Norskov, K.W. Jacobsen, Phys. Rev. B 84, 245429 (2011)

    Article  ADS  Google Scholar 

  13. I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, J.M. Soler, Phys. Rev. Lett. 81, 1600 (1998)

    Article  ADS  Google Scholar 

  14. H.-Y. Zhao, H. Ning, J. Wang, X.-J. Su, X.-G. Guo, Y. Liu, Phys. Lett. A 374, 1033 (2010)

    Article  ADS  Google Scholar 

  15. J. Oviedo, R.E. Palmer, J. Chem. Phys. 117, 9548 (2002)

    Article  ADS  Google Scholar 

  16. L. Xiao, L. Wang, Chem. Phys. Lett. 392, 452 (2004)

    Article  ADS  Google Scholar 

  17. J. Li, X. Li, H.J. Zhai, L.S. Wang, Science 299, 864 (2003)

    Article  ADS  Google Scholar 

  18. P. Gruene, D.M. Rayner, B. Redlich, A.F. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321, 674 (2008)

    Article  ADS  Google Scholar 

  19. P. Weis, Int. J. Mass Spectrom. 245, 1 (2005)

    Article  ADS  Google Scholar 

  20. Z.W. Wang, R.E. Palmer, Nanoscale 4, 4947 (2012)

    Article  ADS  Google Scholar 

  21. B.A. Smith, J.Z. Zhang, U. Giebel, G. Schmid, Chem. Phys. Lett. 270, 139 (1997)

    Article  ADS  Google Scholar 

  22. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001)

    Article  Google Scholar 

  23. K. Chenoweth, A.C. van Duin, W.A. Goddard, J. Phys. Chem. A 112, 1040 (2008)

    Article  Google Scholar 

  24. A.C.T. van Duin, ReaxFF User Manual (Beckman Institute (139-74), California Institute of Technology, Pasadena, CA 91125 USA, 2002)

  25. T. Liang, Y.K. Shin, Y.T. Cheng, D.E. Yilmaz, K.G. Vishnu, O. Verners, C. Zou, S.R. Phillpot, S.B. Sinnott, A.C. van Duin, Ann. Rev. Mater. Res. 43, 109 (2013)

    Article  ADS  Google Scholar 

  26. T.T. Järvi, A. Kuronen, M. Hakala, K. Nordlund, A.C. van Duin, I. Goddard, W.A., T. Jacob, Eur. Phys. J. B 66, 75 (2008)

    Article  ADS  Google Scholar 

  27. J.A. Keith, D. Fantauzzi, T. Jacob, A.C.T. van Duin, Phys. Rev. B 81, 235404 (2010)

    Article  ADS  Google Scholar 

  28. T.T. Järvi, A.C.T. van Duin, K. Nordlund, W.A. Goddard, J. Phys. Chem. A 115, 10315 (2011)

    Article  Google Scholar 

  29. J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002)

    Article  ADS  Google Scholar 

  30. J. Wang, G. Wang, J. Zhao, Chem. Phys. Lett. 380, 716 (2003)

    Article  ADS  Google Scholar 

  31. J.M. Cabrera-Trujillo, J.M. Montejano-Carrizales, J.L. Rodríguez-López, W. Zhang, J.J. Velázquez-Salazar, M. José-Yacamán, J. Phys. Chem. C 114, 21051 (2010)

    Article  Google Scholar 

  32. J.I. Nishigaki, K. Koyasu, T. Tsukuda, Chem. Rec. 14, 897 (2014)

    Article  Google Scholar 

  33. A. Mayoral, C. Magen, M. Jose-Yacaman, J. Cryst. Growth Design 11, 4538 (2011)

    Article  Google Scholar 

  34. A. Mayoral, A. Vazquez-Duran, H. Barron, M. Jose-Yacaman, Appl. Phys. A 97, 11 (2009)

    Article  ADS  Google Scholar 

  35. J.A. Ascencio, M. Pérez, M. José-Yacamán, Surf. Sci. 447, 73 (2000)

    Article  ADS  Google Scholar 

  36. V. Gomzi, J. Comput. Theor. Nanosci. 9, 419 (2012)

    Article  Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  38. J. Farges, M.F. De Feraudy, B. Raoult, G. Torchet, Surf. Sci. 156, 370 (1985)

    Article  ADS  Google Scholar 

  39. J.L. Burt, J.L. Elechiguerra, J. Reyes-Gasga, J.M. Montejano-Carrizales, M. Jose-Yacaman, J. Cryst. Growth 285, 681 (2005)

    Article  ADS  Google Scholar 

  40. H.M. Aktulga, J.C. Fogarty, S.A. Pandit, A.Y. Grama, Parallel Comput. 38, 245 (2012)

    Article  Google Scholar 

  41. J.M. Haile, Molecular dynamics simulation: elementary methods (John Wiley & Sons, Inc., New York, 1992)

  42. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Phys. Rev. B 58, 11085 (1998)

    Article  ADS  Google Scholar 

  43. T. Castro, R. Reifenberger, E. Choi, R.P. Andres, Phys. Rev. B 42, 8548 (1990)

    Article  ADS  Google Scholar 

  44. G. Schmid, General Features of Metal Nanoparticles Physics and Chemistry, 1st edn. (Elsevier, Amsterdam, 2008), Chap. 1, pp. 3–20

  45. S.Y. Davydov, Phys. Solid State 41, 8 (1999)

    Article  ADS  Google Scholar 

  46. Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, edited by B. Corain, G. Schmid, N. Toshima, 1st edn. (Elsevier, Amsterdam, 2008)

  47. C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley & Sons, Inc, 2005)

  48. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  49. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  50. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  51. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  52. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. (Cambridge University Press, Cambridge, 1992), Vol. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Manuel Cabrera-Trujillo or Juan Martín Montejano-Carrizales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Trujillo, J.M., Montejano-Carrizales, J.M., Aguilera-Granja, F. et al. Theoretical study of the thermally induced structural fluctuations in sub-nanometre size gold clusters. Eur. Phys. J. D 69, 167 (2015). https://doi.org/10.1140/epjd/e2015-60058-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60058-y

Keywords

Navigation