Skip to main content
Log in

RADAMOL tool: Role of radiation quality and charge transfer in damage distribution along DNA oligomer

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Theoretical modeling is a powerful tool to predict radiation damage of biomolecules such as DNA, proteins and more complex biological targets. In this paper, we present damage distributions along a DNA oligomer irradiated by 10 keV electrons, 1, 2, 5, 10 and 20 MeV protons and alpha particles predicted by the simulation tool RADAMOL. The scavengeable damage of base and deoxyribose moieties due to radical attack is more important in the studied system than unscavengeable ionizations of the DNA target and surrounding bound water layer. Radiation quality does not modify distribution of primary damages along the DNA, but changes overall damage yields. For the first time, electron and hole migration along the DNA macromolecule has been taken into account in the simulation procedure. The effect of these processes on distribution of DNA damages is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Lea, Action of Radiations on Living Cells (The Macmillan Co., Cambridge University Press, 1946)

  2. C.R. Treadway, M.G. Hill, J.K. Barton, Chem. Phys. 281, 409 (2002)

    Article  ADS  Google Scholar 

  3. D. Becker, A. Adhikary, M.D. Sevilla, in Charge migration in DNA, edited by T. Chakraborty (Springer, 2007), pp. 139–175

  4. S.G. Swarts, D. Becker, M. Sevilla, K.T. Wheeler, Radiat. Res. 145, 304 (1996)

    Article  Google Scholar 

  5. B. Giese, Bioorg. Med. Chem. 14, 6139 (2006)

    Article  Google Scholar 

  6. B. Giese, Curr. Opin. Chem. Biol. 6, 612 (2002)

    Article  Google Scholar 

  7. B. Giese, Annu. Rev. Biochem. 71, 51 (2002)

    Article  Google Scholar 

  8. B. Giese, A. Biland, Chem. Commun. 667 (2002)

  9. H. Nikjoo, S. Uehara, D. Emfietzoglou, F. Cucinotta, Radiat. Meas. 41, 1052 (2006)

    Article  Google Scholar 

  10. W. Friedland, M. Dingfelder, P. Kundrát, P. Jacob, Mutat. Res. Fund. Mol. M. 711, 28 (2011)

    Article  Google Scholar 

  11. W. Friedland, P. Kundrát, Mutat. Res. Gen. Tox. Environ. Mutag. 756, 213 (2013)

    Article  Google Scholar 

  12. R. Taleei, H. Nikjoo, Mutat. Res. Gen. Tox. Environ. Mutag. 756, 206 (2013)

    Article  Google Scholar 

  13. R. Taleei, H. Nikjoo, Radiat. Res. 179, 530 (2013)

    Article  Google Scholar 

  14. J. Meesungnoen, J.P. Jay-Gerin, J. Phys. Chem. A 109, 6406 (2005)

    Article  Google Scholar 

  15. B. Gervais, M. Beuve, G. Olivera, M. Galassi, Radiat. Phys. Chem. 75, 493 (2006)

    Article  ADS  Google Scholar 

  16. T. Sato, Y. Kase, R. Watanabe, K. Niita, L. Sihver, Radiat. Res. 171, 107 (2009)

    Article  Google Scholar 

  17. M. Krämer, M. Durante, Eur. Phys. J. D 60, 195 (2010)

    Article  ADS  Google Scholar 

  18. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  19. S. Incerti et al., Med. Phys. 37, 4692 (2010)

    Article  Google Scholar 

  20. I. Plante, Radiat. Environ. Biophys. 50, 389 (2011)

    Article  Google Scholar 

  21. I. Plante, Radiat. Environ. Biophys. 50, 405 (2011)

    Article  Google Scholar 

  22. M. Karamitros, Ph.D. thesis, University of Bordeaux 1, France, 2012, http://www.theses.fr/2012BOR14629

  23. M. Karamitros et al., J. Comput. Phys. 274, 841 (2014)

    Article  ADS  Google Scholar 

  24. E.A. Bigildeeev, V. Michalik, Radiat. Phys. Chem. 47, 197 (1996)

    Article  ADS  Google Scholar 

  25. J. Allison et al., IEEE T. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  26. V. Michalik, M. Begusova, E.A. Bigildeev, Radiat. Res. 149, 224 (1998)

    Article  Google Scholar 

  27. M. Begusova, S. Giliberto, J. Gras, D. Sy, M. Charlier, M. Spotheim-Maurizot, Int. J. Radiat. Biol. 79, 385 (2003)

    Article  Google Scholar 

  28. M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat. Environ. Biophys. 48, 349 (2009)

    Article  Google Scholar 

  29. E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Eur. Phys. J. D 60, 101 (2010)

    Article  ADS  Google Scholar 

  30. H. Nikjoo, D.E. Charlton, D.T. Goodhead, Adv. Space Res. 14, 161 (1994)

    Article  ADS  Google Scholar 

  31. D.E. Charlton, H. Nikjoo, J.L. Humm, Int. J. Radiat. Biol. 56, 1 (1989)

    Article  Google Scholar 

  32. D. Liljequist, H. Nikjoo, Radiat. Phys. Chem. 99, 45 (2014)

    Article  ADS  Google Scholar 

  33. E. Alizadeh, L. Sanche, J. Phys. Chem. C 117, 22445 (2013)

    Article  Google Scholar 

  34. E. Alizadeh, A.G. Sanz, G. Garcìa, L. Sanche, J. Phys. Chem. Lett. 4, 820 (2013)

    Article  Google Scholar 

  35. A. Ito, H. Nakano, Y. Kusano, R. Hirayama, Y. Furusawa, C. Murayama, T. Mori, Y. Katsumura, K. Shinohara, Radiat. Res. 165, 703 (2006)

    Article  Google Scholar 

  36. M. Davídková, M. Spotheim-Maurizot, in Radiation Chemistry: From basics to applications in material and life sciences, edited by M. Spotheim-Maurizot, M. Mostafavi, T. Douki, J. Belloni (EDP Sciences, 2008), pp. 277–289

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Davídková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štěpán, V., Davídková, M. RADAMOL tool: Role of radiation quality and charge transfer in damage distribution along DNA oligomer. Eur. Phys. J. D 68, 240 (2014). https://doi.org/10.1140/epjd/e2014-50068-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50068-8

Keywords

Navigation