Skip to main content
Log in

Data analysis of Q-value measurements for double-electron capture with SHIPTRAP

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A measurement campaign has been carried out for the search for resonantly enhanced neutrinoless double-electron-capture transitions by the determination of the Q εε -values with the SHIPTRAP Penning-trap mass spectrometer. The Q εε -values have been determined by measuring the cyclotron-frequency ratios of the mother and daughter nuclides of the transitions. This article describes the experimental approach and the data analysis by the example of neutrinoless double-electron capture in 152Gd. Various effects as, e.g., temporal fluctuations and spatial inhomogeneity of the magnetic field, or the variation of the ion number in the trap were found not to affect the frequency ratio on the 1 ppb-level, which is the present statistical uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.S. Barabash, arXiv:1101.4502[nucl-ex]

  2. J. Bernabéu, A. De Rújula, C. Jarlskog, Nucl. Phys. B 223, 15 (1983)

    Article  ADS  Google Scholar 

  3. K. Blaum, Yu.N. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  4. R.G. Winter, Phys. Rev. 100, 142 (1955)

    Article  ADS  Google Scholar 

  5. M.I. Krivoruchenko et al., Nucl. Phys. A 859, 140 (2011)

    Article  ADS  Google Scholar 

  6. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  7. S.A. Eliseev, Yu.N. Novikov, K. Blaum, J. Phys. G 39, 124003 (2012)

    Article  ADS  Google Scholar 

  8. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  9. S. Eliseev et al., Phys. Rev. Lett. 106, 052504 (2011)

    Article  ADS  Google Scholar 

  10. S. Eliseev et al., Phys. Rev. C 83, 038501 (2011)

    Article  ADS  Google Scholar 

  11. S. Eliseev et al., Phys. Rev. C 84, 012501(R) (2011)

    Article  ADS  Google Scholar 

  12. M. Goncharov et al., Phys. Rev. C 84, 28501 (2011)

    Article  ADS  Google Scholar 

  13. S. Eliseev et al., Phys. Rev. Lett. 107, 152501 (2011)

    Article  ADS  Google Scholar 

  14. C. Droese et al., Nucl. Phys. A 875, 1 (2012)

    Article  ADS  Google Scholar 

  15. D.A. Nesterenko et al., Phys. Rev. C 86, 044313 (2012)

    Article  ADS  Google Scholar 

  16. M. Block et al., Nature 463, 785 (2010)

    Article  ADS  Google Scholar 

  17. E. Minaya Ramirez, et al., Science 337, 1207 (2012)

    Article  ADS  Google Scholar 

  18. G. Münzenberg et al., Nucl. Instrum. Methods 161, 65 (1979)

    Article  ADS  Google Scholar 

  19. A. Chaudhuri et al., Eur. Phys. J. D 45, 47 (2007)

    Article  ADS  Google Scholar 

  20. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  21. M. Kretzschmar, Eur. Phys. J. D 48, 313 (2008)

    Article  ADS  Google Scholar 

  22. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  23. C. Droese et al., Nucl. Instrum. Methods A 632, 157 (2011)

    Article  ADS  Google Scholar 

  24. G. Audi et al., Nucl. Phys. A 729, 3 (2003)

    Article  ADS  Google Scholar 

  25. S. George et al., Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  26. S. George et al., Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  27. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  28. R. Birge, Phys. Rev. 40, 207 (1932)

    Article  ADS  MATH  Google Scholar 

  29. D.-L. Fang et al., Phys. Rev. C 85, 035503 (2012)

    Article  ADS  Google Scholar 

  30. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  31. G. Bollen et al., Nucl. Instrum. Methods A 368, 675 (1996)

    Article  ADS  Google Scholar 

  32. G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)

    Article  ADS  Google Scholar 

  33. L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)

    Article  ADS  Google Scholar 

  34. R.S. Van Dyck Jr. et al., Phys. Rev. A 40, 6308 (1989)

    Article  ADS  Google Scholar 

  35. J.V. Porto, Phys. Rev. A 64, 023403 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  36. H. Häffner, Ph.D. thesis, Johannes Gutenberg-Universität Mainz (2000), http://ubm.opus.hbz-nrw.de/volltexte/2000/45/

  37. G. Bollen et al., Phys. Rev. C 46, R2140 (1992)

    Article  ADS  Google Scholar 

  38. M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)

    Article  ADS  Google Scholar 

  39. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Roux.

Additional information

This article comprises parts of the Ph.D. thesis of C. Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, C., Blaum, K., Block, M. et al. Data analysis of Q-value measurements for double-electron capture with SHIPTRAP. Eur. Phys. J. D 67, 146 (2013). https://doi.org/10.1140/epjd/e2013-40110-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40110-x

Keywords

Navigation