Skip to main content
Log in

A phenomenological approach for the transport properties of air plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

The transport coefficients of Earth atmosphere in equilibrium, in wide temperature and pressure ranges, have been calculated using collision integrals derived in a phenomenological approach, accounting also for resonant processes contributions. This approach could be a valuable tool in the calculation of complete data sets for complex mixtures, including interactions hardly handled in the accurate multi-potential methods. A systematic comparison with transport coefficients obtained using an old data set, widely used in literature, has been carried out to estimate the reliability of the proposed approach in evaluating transport cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Laricchiuta et al., Eur. Phys. J. D 54, 607 (2009)

    Article  ADS  Google Scholar 

  2. B. Sourd, J. Aubreton, M.F. Elchinger, M. Labrot, U. Michon, J. Phys. D 39, 1105 (2006)

    Article  ADS  Google Scholar 

  3. E. Levin, M.J. Wright, J. Thermophys. Heat Transfer 18, 143 (2004)

    Article  Google Scholar 

  4. J.R. Stallcop, H. Partridge, E. Levin, Phys. Rev. A 64, 042722 (2001)

    Article  ADS  Google Scholar 

  5. M. Capitelli, C. Gorse, S. Longo, D. Giordano, J. Thermophys. Heat Transfer 14, 259 (2000)

    Article  Google Scholar 

  6. A.B. Murphy, Plasma Chem. Plasma Process. 15, 279 (1995)

    Article  Google Scholar 

  7. J.R. Stallcop, H. Partridge, E. Levin, J. Chem. Phys. 95, 6429 (1991)

    Article  ADS  Google Scholar 

  8. R.N. Gupta, J.M. Yos, R.A. Thompson, K.P. Lee, NASA Report RP-1232, 1990

  9. M.J. Wright, H.H. Hwang, D.W. Schwenke, AIAA J. 45, 281 (2007)

    Article  ADS  Google Scholar 

  10. M.J. Wright, D. Bose, G.E. Palmer, E. Levin, AIAA J. 43, 2558 (2005)

    Article  ADS  Google Scholar 

  11. M. Capitelli, D. Bruno, G. Colonna, C. Catalfamo, A. Laricchiuta, J. Phys. D 42, 194005 (2009)

    Article  ADS  Google Scholar 

  12. D. Bruno, A. Laricchiuta, M. Capitelli, C. Catalfamo, Phys. Plasmas 14, 022303 (2007)

    Article  ADS  Google Scholar 

  13. M. Capitelli, R. Celiberto, C. Gorse, A. Laricchiuta, D. Pagano, P. Traversa, Phys. Rev. E 69, 026412 (2004)

    Article  ADS  Google Scholar 

  14. M. Capitelli, R. Celiberto, C. Gorse, A. Laricchiuta, P. Minelli, D. Pagano, Phys. Rev. E 66, 016403 (2002)

    Article  ADS  Google Scholar 

  15. F. Pirani, G.S. Maciel, D. Cappelletti, V. Aquilanti, Int. Rev. Phys. Chem. 25, 165 (2006)

    Article  Google Scholar 

  16. F. Pirani, M. Albertí, A. Castro, M.M. Teixidor, D. Cappelletti, Chem. Phys. Lett. 394, 37 (2004)

    Article  ADS  Google Scholar 

  17. F. Pirani, D. Cappelletti, G. Liuti, Chem. Phys. Lett. 350, 286 (2001)

    Article  ADS  Google Scholar 

  18. A. Laricchiuta, F. Pirani, G. Colonna, D. Bruno, C. Gorse, R. Celiberto, M. Capitelli, J. Phys. Chem. A 113, 15250 (2009)

    Article  Google Scholar 

  19. M. Capitelli, D. Cappelletti, G. Colonna, C. Gorse, A. Laricchiuta, G. Liuti, S. Longo, F. Pirani, Chem. Phys. 338, 62 (2007)

    Article  ADS  Google Scholar 

  20. A.V. Kosarim, B.M. Smirnov, M. Capitelli, R. Celiberto, A. Laricchiuta, Phys. Rev. A 74, 0627071 (2006)

    Article  Google Scholar 

  21. A.V. Kosarim, B.M. Smirnov, J. Exp. Theor. Phys. 101, 611 (2005)

    Article  ADS  Google Scholar 

  22. B.M. Smirnov, Phys. Uspekhi 44, 221 (2001)

    Article  ADS  Google Scholar 

  23. E.E. Nikitin, B.M. Smirnov, Sov. Phys. Usp. 21, 95 (1978)

    Article  ADS  Google Scholar 

  24. D. Bruno et al., Phys. Plasmas 17, 112315 (2010)

    Article  ADS  Google Scholar 

  25. P. André, J. Aubreton, S. Clain, M. Dudeck, E. Duffour, M.F. Elchinger, B. Izrar, D. Rochette, R. Touzani, D. Vacher, Eur. Phys. J. D 57, 227 (2010)

    Article  ADS  Google Scholar 

  26. P. André, W. Bussière, D. Rochette, Plasma Chem. Plasma Process. 27, 381 (2007)

    Article  Google Scholar 

  27. J. Aubreton, M.F. Elchinger, A. Hacala, U. Michon, J. Phys. D 42, 095206 (2009)

    Article  ADS  Google Scholar 

  28. H.S. Hahn, E.A. Mason, F.J. Smith, Phys. Fluids 14, 278 (1971)

    Article  ADS  Google Scholar 

  29. M. Capitelli, J. Phys. Colloq. C3 Suppl. 38, 227 (1977)

    Google Scholar 

  30. R.S. Devoto, Phys. Fluids 10, 2105 (1967)

    Article  ADS  Google Scholar 

  31. G. Colonna, A. D’Angola, Comput. Phys. Commun. 163, 177 (2004)

    Article  ADS  Google Scholar 

  32. G. Colonna, Comput. Phys. Commun. 177, 493 (2007)

    Article  ADS  MATH  Google Scholar 

  33. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics: Thermodynamics (Springer Series on Atomic, Optical, and Plasma Physics, 2011), Vol. 66

  34. M. Capitelli, G. Colonna, C. Gorse, A. D’Angola, Eur. Phys. J. D 11, 279 (2000)

    Article  ADS  Google Scholar 

  35. A. D’Angola, G. Colonna, C. Gorse, M. Capitelli, Eur. Phys. J. D 46, 129 (2008)

    Article  ADS  Google Scholar 

  36. A. D’Angola, G. Colonna, C. Gorse, M. Capitelli, Eur. Phys. J. D 65, 453 (2011)

    Article  ADS  Google Scholar 

  37. J.E. Morgan, H.I. Schiff, Can. J. Chem. 42, 2300 (1964)

    Article  Google Scholar 

  38. B. Brunetti, G. Liuti, E. Luzzatti, F. Pirani, F. Vecchiocattivi, J. Chem. Phys. 74, 6734 (1981)

    Article  ADS  Google Scholar 

  39. F. Pirani, D. Cappelletti, V. Aquilanti, Molecular Physics and Hypersonic Flows, edited by M. Capitelli (Kluwer Academic, Dordrecht, 1996)

  40. R.S. Brokaw, J. Chem. Phys. 32, 1005 (1960)

    Article  ADS  Google Scholar 

  41. J.N. Butler, R.S. Brokaw, J. Chem. Phys. 26, 1636 (1957)

    Article  ADS  Google Scholar 

  42. Y.N. Belyaev, B.G. Brezhnev, E.M. Erastov, Soviet Phys. JEPT 27, 924 (1968)

    ADS  Google Scholar 

  43. R.L. Liboff, Phys. Fluids 2, 40 (1959)

    Article  ADS  MATH  Google Scholar 

  44. R.S. Devoto, J. Plasma Phys. 2, 617 (1968)

    Article  ADS  Google Scholar 

  45. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, 1970)

  46. J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972)

  47. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964)

  48. O. Ẑivný, Eur. Phys. J. D 54, 349 (2009)

    Article  ADS  Google Scholar 

  49. A. Michels, R.O. Gibson, Roy. Soc. Lond. Proc. Ser. A 134, 288 (1931)

    Article  ADS  Google Scholar 

  50. D. Bruno, M. Capitelli, C. Catalfamo, D. Giordano, Phys. Plasmas 18, 012308 (2011)

    Article  ADS  Google Scholar 

  51. W.Z. Wang, M.Z. Rong, J.D. Yan, A.B. Murphy, J.W. Spencer, Phys. Plasmas 18, 113502 (2011)

    Article  ADS  Google Scholar 

  52. S. Ghorui, J. Heberlein, E. Pfender, Plasma Chem. Plasma Proc. 28, 553 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D’Angola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Angola, A., Colonna, G., Bonomo, A. et al. A phenomenological approach for the transport properties of air plasmas. Eur. Phys. J. D 66, 205 (2012). https://doi.org/10.1140/epjd/e2012-30147-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30147-8

Keywords

Navigation