Skip to main content
Log in

Universality in pure gravity mediation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

If low-energy supersymmetry is realized in nature, the apparent discovery of a Higgs boson with mass around 125 GeV suggests a supersymmetric mass spectrum in the TeV or multi-TeV range. Multi-TeV scalar masses are a necessary component of supersymmetric models with pure gravity mediation or in any model with strong moduli stabilization. Here, we show that full scalar mass universality remains viable as long as the ratio of Higgs vevs, tanβ, is relatively small (≲2.5). We discuss in detail the low-energy (observable) consequences of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Some possible exceptions are the NMSSM and models with non-decoupling D-terms.

  2. Scalar masses this large necessitate fine tuning in the electroweak sector.

  3. This sum rule is perturbed by the gluino mass, and so becomes \(m_{2}^{2}+m_{\tilde{Q}_{3}}^{2}+m_{\tilde{t}_{R}}^{2}\approx m_{\tilde{g}}\ll m_{3/2}\).

  4. This is only true for larger values of tanβ. Because I(t SUSY)∼1/3, small changes have a drastic effect on the sign of \(m_{2}^{2}\). In fact, it is regions where I(t SUSY)>1/3 that lead to the breakdown of EWSB.

  5. As is evident from the above derivation, the upper limit can be relaxed by non-universalities of the scalar masses which are induced by a non-universal Kähler potential or some running effects above the GUT scale [60].

  6. This expression is sensitive to the sign conventions of μ.

  7. Information about this code is available from K.A. Olive: it contains important contributions from T. Falk, A. Ferstl, F. Luo, G. Ganis, A. Mustafayev, J. McDonald, K.A. Olive, P. Sandick, Y. Santoso, V. Spanos, and M. Srednicki.

  8. See also Ref. [130] for the constraints on the direct chargino production using a disappearing-track signature at the LHC.

  9. For two-loop analysis on the wino mass splitting, see Ref. [132].

  10. As we have discussed in the previous section, the universal boundary condition leads to the lighter third generation squarks than the other squarks. In this case, the gluino tends to decay into a wino with a pair of top quarks and bottom quarks. Thus, the final state of the gluino production events include many b-quarks which slightly change the sensitivities to multi-jets plus missing transverse energy events. (See also Ref. [32].)

  11. For a wino mass less than 500 GeV, the wino constituent of dark matter is restricted to be a fraction of the total dark matter [141].

References

  1. M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234

    Article  ADS  Google Scholar 

  2. G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49, 6173 (1994). arXiv:hep-ph/9312272

    Article  ADS  Google Scholar 

  3. H. Baer, M. Brhlik, Phys. Rev. D 53, 597 (1996). arXiv:hep-ph/9508321

    Article  ADS  Google Scholar 

  4. H. Baer, M. Brhlik, Phys. Rev. D 57, 567 (1998). arXiv:hep-ph/9706509

    Article  ADS  Google Scholar 

  5. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 388, 97 (1996). arXiv:hep-ph/9607292

    Article  ADS  Google Scholar 

  6. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 413, 355 (1997). arXiv:hep-ph/9705444

    Article  ADS  Google Scholar 

  7. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Schmitt, Phys. Rev. D 58, 095002 (1998). arXiv:hep-ph/9801445

    Article  ADS  Google Scholar 

  8. V.D. Barger, C. Kao, Phys. Rev. D 57, 3131 (1998). arXiv:hep-ph/9704403

    Article  ADS  Google Scholar 

  9. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, Phys. Rev. D 62, 075010 (2000). arXiv:hep-ph/0004169

    Article  ADS  Google Scholar 

  10. H. Baer, M. Brhlik, M.A. Diaz, J. Ferrandis, P. Mercadante, P. Quintana, X. Tata, Phys. Rev. D 63, 015007 (2001). arXiv:hep-ph/0005027

    Article  ADS  Google Scholar 

  11. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001). arXiv:hep-ph/0102098

    Article  ADS  Google Scholar 

  12. V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001). arXiv:hep-ph/0106189

    Article  ADS  Google Scholar 

  13. L. Roszkowski, R. Ruiz de Austri, T. Nihei, J. High Energy Phys. 0108, 024 (2001). arXiv:hep-ph/0106334

    Article  ADS  Google Scholar 

  14. A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316

    Article  ADS  Google Scholar 

  15. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 66, 035003 (2002). arXiv:hep-ph/0201001

    Article  ADS  Google Scholar 

  16. J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002). arXiv:hep-ph/0202110

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). arXiv:hep-ph/0205325

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Arnowitt, B. Dutta. arXiv:hep-ph/0211417

  19. E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen, S. Ferrara, L. Girardello, Phys. Lett. B 79, 231 (1978)

    Article  ADS  Google Scholar 

  20. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, P. van Nieuwenhuizen, Nucl. Phys. B 147, 105 (1979)

    Article  ADS  Google Scholar 

  21. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  22. A. Brignole, L.E. Ibanez, C. Munoz, in Perspectives on Supersymmetry, ed. by G.L. Kane (1997), pp. 125–148. arXiv:hep-ph/9707209

    Google Scholar 

  23. A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  24. R.L. Arnowitt, A.H. Chamseddine, P. Nath, Phys. Rev. Lett. 50, 232 (1983)

    Article  ADS  Google Scholar 

  25. R. Arnowitt, A.H. Chamseddine, P. Nath. arXiv:1206.3175 [physics.hist-ph]

  26. R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119, 343 (1982)

    Article  ADS  Google Scholar 

  27. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 573, 162 (2003). arXiv:hep-ph/0305212

    Article  ADS  MATH  Google Scholar 

  28. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 70, 055005 (2004). arXiv:hep-ph/0405110

    Article  ADS  Google Scholar 

  29. M. Ibe, T. Moroi, T.T. Yanagida, Phys. Lett. B 644, 355 (2007). hep-ph/0610277

    Article  ADS  Google Scholar 

  30. M. Ibe, T.T. Yanagida, Phys. Lett. B 709, 374 (2012). arXiv:1112.2462 [hep-ph]

    Article  ADS  Google Scholar 

  31. M. Ibe, S. Matsumoto, T.T. Yanagida, Phys. Rev. D 85, 095011 (2012). arXiv:1202.2253 [hep-ph]

    Article  ADS  Google Scholar 

  32. B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto, T.T. Yanagida, Phys. Rev. D 87, 015028 (2013). arXiv:1207.5453 [hep-ph]

    Article  ADS  Google Scholar 

  33. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner, T. Zorawski. arXiv:1212.6971 [hep-ph]

  34. M. Dine, D. MacIntire, Phys. Rev. D 46, 2594 (1992). hep-ph/9205227

    Article  ADS  Google Scholar 

  35. L. Randall, R. Sundrum, Nucl. Phys. B 557, 79 (1999). arXiv:hep-th/9810155

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. G.F. Giudice, M.A. Luty, H. Murayama, R. Rattazzi, J. High Energy Phys. 9812, 027 (1998). arXiv:hep-ph/9810442

    Article  ADS  Google Scholar 

  37. J.A. Bagger, T. Moroi, E. Poppitz, J. High Energy Phys. 0004, 009 (2000). arXiv:hep-th/9911029

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Binetruy, M.K. Gaillard, B.D. Nelson, Nucl. Phys. B 604, 32 (2001). arXiv:hep-ph/0011081

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. N. Arkani-Hamed, S. Dimopoulos, J. High Energy Phys. 0506, 073 (2005). arXiv:hep-th/0405159

    Article  ADS  Google Scholar 

  40. G.F. Giudice, A. Romanino, Nucl. Phys. B 699, 65 (2004). Erratum-ibid. Nucl. Phys. B 706, 65 (2005). arXiv:hep-ph/0406088

    Article  ADS  MATH  Google Scholar 

  41. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice, A. Romanino, Nucl. Phys. B 709, 3 (2005). arXiv:hep-ph/0409232

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. J.D. Wells, Phys. Rev. D 71, 015013 (2005). arXiv:hep-ph/0411041

    Article  ADS  Google Scholar 

  43. G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby, G.G. Ross, Phys. Lett. B 131, 59 (1983)

    Article  ADS  Google Scholar 

  44. A.S. Goncharov, A.D. Linde, M.I. Vysotsky, Phys. Lett. B 147, 279 (1984)

    Article  ADS  Google Scholar 

  45. T. Banks, D.B. Kaplan, A.E. Nelson, Phys. Rev. D 49, 779–787 (1994)

    Article  ADS  Google Scholar 

  46. G.R. Dvali, arXiv:hep-ph/9503259

  47. M. Dine, L. Randall, S.D. Thomas, Phys. Rev. Lett. 75, 398–401 (1995). hep-ph/9503303

    Article  ADS  Google Scholar 

  48. J. Polonyi, Budapest preprint KFKI-1977-93 (1977)

  49. T. Moroi, T. Yanagida, Prog. Theor. Phys. 91, 1277 (1994). hep-ph/9403296

    Article  ADS  Google Scholar 

  50. I. Joichi, M. Yamaguchi, Phys. Lett. B 342, 111 (1995). hep-ph/9409266

    Article  ADS  Google Scholar 

  51. T. Moroi, M. Yamaguchi, T. Yanagida, Phys. Lett. B 342, 105 (1995). hep-ph/9409367

    Article  ADS  Google Scholar 

  52. K.-I. Izawa, T. Yanagida, Prog. Theor. Phys. 94, 1105 (1995). hep-ph/9507441

    Article  ADS  Google Scholar 

  53. A.D. Linde, Phys. Rev. D 53, 4129 (1996). hep-th/9601083

    Article  MathSciNet  ADS  Google Scholar 

  54. K. Nakayama, F. Takahashi, T.T. Yanagida, Phys. Rev. D 84, 123523 (2011). arXiv:1109.2073 [hep-ph]

    Article  ADS  Google Scholar 

  55. K. Nakayama, F. Takahashi, T.T. Yanagida, Phys. Lett. B 714, 256 (2012). arXiv:1203.2085 [hep-ph]

    Article  ADS  Google Scholar 

  56. T. Moroi, T.T. Yanagida, N. Yokozaki, Phys. Lett. B 719, 148 (2013). arXiv:1211.4676 [hep-ph]

    Article  ADS  Google Scholar 

  57. K. Harigaya, M. Ibe, K. Schmitz, T.T. Yanagida. arXiv:1301.3685 [hep-ph]

  58. R. Kallosh, A. Linde, K.A. Olive, T. Rube, Phys. Rev. D 84, 083519 (2011). arXiv:1106.6025 [hep-th]

    Article  ADS  Google Scholar 

  59. A. Linde, Y. Mambrini, K.A. Olive, Phys. Rev. D 85, 066005 (2012). arXiv:1111.1465 [hep-th]

    Article  ADS  Google Scholar 

  60. E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev, K.A. Olive, arXiv:1209.0499 [hep-ph]

  61. E. Dudas, C. Papineau, S. Pokorski, J. High Energy Phys. 0702, 028 (2007). hep-th/0610297

    Article  MathSciNet  ADS  Google Scholar 

  62. H. Abe, T. Higaki, T. Kobayashi, Y. Omura, Phys. Rev. D 75, 025019 (2007). hep-th/0611024

    Article  ADS  Google Scholar 

  63. G. Aad et al. (ATLAS Collaboration), arXiv:1208.0949 [hep-ex]

  64. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1210, 018 (2012). arXiv:1207.1798 [hep-ex]

    Article  ADS  Google Scholar 

  65. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 109, 171803 (2012). arXiv:1207.1898 [hep-ex]

    Article  ADS  Google Scholar 

  66. O. Buchmueller et al., Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564 [hep-ph]

    Article  ADS  Google Scholar 

  67. C. Strege, G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri, R. Trotta, J. Cosmol. Astropart. Phys. 1203, 030 (2012). arXiv:1112.4192 [hep-ph]

    Article  ADS  Google Scholar 

  68. P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer, C. Hensel, M. Kramer, N. Nguyen et al., J. High Energy Phys. 1206, 098 (2012). arXiv:1204.4199 [hep-ph]

    Article  ADS  Google Scholar 

  69. A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E.M. Sessolo, S. Trojanowski, Y.-L.S. Tsai, arXiv:1206.0264 [hep-ph]

  70. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, arXiv:1206.2633 [hep-ph], and references therein

  71. O. Buchmueller et al., arXiv:1207.7315 [hep-ph]

  72. C. Strege, G. Bertone, F. Feroz, M. Fornasa, R.R. de Austri, R. Trotta, arXiv:1212.2636 [hep-ph]

  73. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  74. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  75. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    Article  ADS  Google Scholar 

  76. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Phys. Lett. B 710, 207 (2012). arXiv:1112.3024 [hep-ph]

    Article  ADS  Google Scholar 

  77. S. Heinemeyer, O. Stal, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  78. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  79. P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph]

    Article  ADS  Google Scholar 

  80. O. Buchmueller et al., Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564 [hep-ph]

    Article  ADS  Google Scholar 

  81. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Phys. Rev. D 85, 075001 (2012). arXiv:1112.3645 [hep-ph]

    Article  ADS  Google Scholar 

  82. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647 [hep-ph]

    Article  ADS  Google Scholar 

  83. J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665 (2012). arXiv:1112.4391 [hep-ph]

    Article  ADS  Google Scholar 

  84. L. Aparicio, D.G. Cerdeno, L.E. Ibanez, J. High Energy Phys. 1204, 126 (2012). arXiv:1202.0822 [hep-ph]

    Article  ADS  Google Scholar 

  85. H. Baer, V. Barger, A. Mustafayev, J. High Energy Phys. 1205, 091 (2012). arXiv:1202.4038 [hep-ph]

    Article  ADS  Google Scholar 

  86. C. Balazs, A. Buckley, D. Carter, B. Farmer, M. White, arXiv:1205.1568 [hep-ph]

  87. D. Ghosh, M. Guchait, S. Raychaudhuri, D. Sengupta, Phys. Rev. D 86, 055007 (2012). arXiv:1205.2283 [hep-ph]

    Article  ADS  Google Scholar 

  88. J.L. Feng, K.T. Matchev, D. Sanford, Phys. Rev. D 85, 075007 (2012). arXiv:1112.3021 [hep-ph]

    Article  ADS  Google Scholar 

  89. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83 (1991)

    Article  ADS  Google Scholar 

  90. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 262, 477 (1991)

    Article  ADS  Google Scholar 

  91. Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1 (1991)

    Article  ADS  Google Scholar 

  92. A. Yamada, Phys. Lett. B 263, 233 (1991)

    Article  ADS  Google Scholar 

  93. H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991)

    Article  ADS  Google Scholar 

  94. M. Drees, M.M. Nojiri, Phys. Rev. D 45, 2482 (1992)

    Article  ADS  Google Scholar 

  95. P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 274, 191 (1992)

    Article  ADS  Google Scholar 

  96. P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 286, 307 (1992)

    Article  ADS  Google Scholar 

  97. Y. Okada, M. Yamaguchi, T. Yanagida, Phys. Lett. B 262, 54 (1991)

    Article  ADS  Google Scholar 

  98. M.E. Cabrera, J.A. Casas, A. Delgado, Phys. Rev. Lett. 108, 021802 (2012). arXiv:1108.3867 [hep-ph]

    Article  ADS  Google Scholar 

  99. D.S.M. Alves, E. Izaguirre, J.G. Wacker, arXiv:1108.3390 [hep-ph]

  100. R. Sato, S. Shirai, K. Tobioka, arXiv:1207.3608 [hep-ph]

  101. J. Ellis, K.A. Olive, Eur. Phys. J. C 72, 2005 (2012). arXiv:1202.3262 [hep-ph]

    Article  ADS  Google Scholar 

  102. J. Ellis, F. Luo, K.A. Olive, P. Sandick, arXiv:1212.4476 [hep-ph]

  103. J.L. Feng, K.T. Matchev, T. Moroi, Phys. Rev. D 61, 075005 (2000). hep-ph/9909334

    Article  ADS  Google Scholar 

  104. K. Inoue, M. Kawasaki, M. Yamaguchi, T. Yanagida, Phys. Rev. D 45, 328 (1992)

    Article  ADS  Google Scholar 

  105. G.F. Giudice, A. Masiero, Phys. Lett. B 206, 480 (1988)

    Article  ADS  Google Scholar 

  106. E. Dudas, Y. Mambrini, A. Mustafayev, K.A. Olive, Eur. Phys. J. C 72, 2138 (2012). arXiv:1205.5988 [hep-ph]

    Article  ADS  Google Scholar 

  107. L. Calibbi, Y. Mambrini, S.K. Vempati, J. High Energy Phys. 0709, 081 (2007). arXiv:0704.3518 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  108. L. Calibbi, A. Faccia, A. Masiero, S.K. Vempati, Phys. Rev. D 74, 116002 (2006). arXiv:hep-ph/0605139

    Article  ADS  Google Scholar 

  109. E. Carquin, J. Ellis, M.E. Gomez, S. Lola, J. Rodriguez-Quintero, J. High Energy Phys. 0905, 026 (2009). arXiv:0812.4243 [hep-ph]

    Article  ADS  Google Scholar 

  110. J. Ellis, A. Mustafayev, K.A. Olive, Eur. Phys. J. C 69, 201 (2010). arXiv:1003.3677 [hep-ph]

    Article  ADS  Google Scholar 

  111. J. Ellis, A. Mustafayev, K.A. Olive, Eur. Phys. J. C 69, 219 (2010). arXiv:1004.5399 [hep-ph]

    Article  ADS  Google Scholar 

  112. J. Ellis, A. Mustafayev, K.A. Olive, Eur. Phys. J. C 71, 1689 (2011). arXiv:1103.5140 [hep-ph]

    Article  ADS  Google Scholar 

  113. D. Pierce, A. Papadopoulos, Phys. Rev. D 50, 565 (1994). hep-ph/9312248

    Article  ADS  Google Scholar 

  114. D. Pierce, A. Papadopoulos, Nucl. Phys. B 430, 278 (1994). hep-ph/9403240

    Article  ADS  Google Scholar 

  115. Joint LEP 2 Supersymmetry Working Group, Combined LEP chargino results, up to 208 GeV. http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/charginos_pub.html

  116. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 35, 1–20 (2004). hep-ex/0401026

    Article  ADS  Google Scholar 

  117. G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C.L. Bennett, J. Dunkley, M.R. Nolta, M. Halpern et al., arXiv:1212.5226 [astro-ph.CO]

  118. T. Gherghetta, G.F. Giudice, J.D. Wells, Nucl. Phys. B 559, 27 (1999). arXiv:hep-ph/9904378

    Article  ADS  Google Scholar 

  119. T. Moroi, L. Randall, Nucl. Phys. B 570, 455 (2000). hep-ph/9906527

    Article  ADS  Google Scholar 

  120. M. Ibe, R. Kitano, H. Murayama, T. Yanagida, Phys. Rev. D 70, 075012 (2004). hep-ph/0403198

    Article  ADS  Google Scholar 

  121. M. Ibe, R. Kitano, H. Murayama, Phys. Rev. D 71, 075003 (2005). hep-ph/0412200

    Article  ADS  Google Scholar 

  122. B.S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao, S. Watson, J. High Energy Phys. 0806, 064 (2008). arXiv:0804.0863 [hep-ph]

    Article  ADS  Google Scholar 

  123. B.S. Acharya, G. Kane, S. Watson, P. Kumar, Phys. Rev. D 80, 083529 (2009). arXiv:0908.2430 [astro-ph.CO]

    Article  ADS  Google Scholar 

  124. B.S. Acharya, G. Kane, P. Kumar, Int. J. Mod. Phys. A 27, 1230012 (2012). arXiv:1204.2795 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  125. R. Arnowitt, P. Nath, Phys. Rev. D 46, 3981 (1992)

    Article  ADS  Google Scholar 

  126. V.D. Barger, M.S. Berger, P. Ohmann, Phys. Rev. D 49, 4908 (1994). arXiv:hep-ph/9311269

    Article  ADS  Google Scholar 

  127. W. de Boer, R. Ehret, D.I. Kazakov, Z. Phys. C 67, 647 (1995). arXiv:hep-ph/9405342

    ADS  Google Scholar 

  128. D.M. Pierce, J.A. Bagger, K.T. Matchev, R.J. Zhang, Nucl. Phys. B 491, 3 (1997). arXiv:hep-ph/9606211

    Article  ADS  Google Scholar 

  129. M. Carena, J.R. Ellis, A. Pilaftsis, C.E. Wagner, Nucl. Phys. B 625, 345 (2002). arXiv:hep-ph/0111245

    Article  ADS  Google Scholar 

  130. ATLAS Collaboration, J. High Energy Phys. 1301, 131 (2013). arXiv:1210.2852 [hep-ex]

    ADS  Google Scholar 

  131. M. Dugan, B. Grinstein, L.J. Hall, Nucl. Phys. B 255, 413 (1985)

    Article  ADS  Google Scholar 

  132. M. Ibe, S. Matsumoto, R. Sato, arXiv:1212.5989 [hep-ph]

  133. J.L. Feng, T. Moroi, L. Randall, M. Strassler, S.-f. Su, Phys. Rev. Lett. 83, 1731 (1999). hep-ph/9904250

    Article  ADS  Google Scholar 

  134. S. Asai, T. Moroi, T.T. Yanagida, Phys. Lett. B 664, 185 (2008). arXiv:0802.3725 [hep-ph]

    Article  ADS  Google Scholar 

  135. H. Baer, J.K. Mizukoshi, X. Tata, Phys. Lett. B 488, 367 (2000). hep-ph/0007073

    Article  ADS  Google Scholar 

  136. A.J. Barr, C.G. Lester, M.A. Parker, B.C. Allanach, P. Richardson, J. High Energy Phys. 0303, 045 (2003). hep-ph/0208214

    Article  ADS  Google Scholar 

  137. N. Bernal, A. Djouadi, P. Slavich, J. High Energy Phys. 0707, 016 (2007). arXiv:0705.1496 [hep-ph]

    Article  ADS  Google Scholar 

  138. G.F. Giudice, A. Strumia, Nucl. Phys. B 858, 63 (2012). arXiv:1108.6077 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  139. Tevatron Electroweak Working Group and CDF and D0 Collaborations, arXiv:1107.5255 [hep-ex]

  140. The ATLAS Collaboration, ATLAS-CONF-2012-109

  141. L.J. Hall, Y. Nomura, S. Shirai, J. High Energy Phys. 1301, 036 (2013). arXiv:1210.2395 [hep-ph]

    Article  ADS  Google Scholar 

  142. O. Buchmueller, R. Cavanaugh, A. De Roeck, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori, K.A. Olive et al., Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph]

    Article  ADS  Google Scholar 

  143. O. Buchmueller, R. Cavanaugh, D. Colling, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer et al., Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Mustafayev for helpful conversations. We would also like to thank T. Moroi and M. Nagai for helping us correct our Higgs mass calculation. The work of J.E. and K.A.O. was supported in part by DOE grant DE–FG02–94ER–40823 at the University of Minnesota. This work is also supported by Grant-in-Aid for Scientific research from the Ministry of Education, Science, Sports, and Culture (MEXT), Japan, No. 22244021 (T.T.Y.), No. 24740151 (M.I.), and also by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason L. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J.L., Ibe, M., Olive, K.A. et al. Universality in pure gravity mediation. Eur. Phys. J. C 73, 2468 (2013). https://doi.org/10.1140/epjc/s10052-013-2468-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2468-9

Keywords

Navigation