Skip to main content
Log in

One-loop effects on MSSM parameter determination via chargino production at the LC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

At a future linear collider very precise measurements, typically with errors of <1 %, are expected to be achievable. Such an accuracy gives sensitivity to the quantum corrections, which therefore must be incorporated in theoretical calculations in order to determine the underlying new physics parameters from prospective linear collider measurements. In the context of the chargino–neutralino sector of the minimal supersymmetric standard model, this involves fitting one-loop predictions to prospective measurements of the cross sections, forward–backward asymmetries and of the accessible chargino and neutralino masses. Taking recent results from LHC SUSY and Higgs searches into account we consider three phenomenological scenarios, each with characteristic features. Our analysis shows how an accurate determination of the desired parameters is possible, providing in addition access to the stop masses and mixing angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We adopt the convention that M 2 is real.

  2. Here N i should not be confused with the neutralino mass matrix N ij .

  3. Note that in light of current LHC limits, the value M 3=700 GeV in S1 and S2 means that the gluino mass is rather low, however, our results are largely independent of this choice as M 3 only enters our calculations via two loop corrections to m h .

  4. Note that in S1(S2) a Higgs mass of m h =125 GeV can also be achieved by adopting cosθ t =−0.4(−0.5).

References

  1. J. Aguilar-Saavedra et al. (ECFA/DESY LC Physics Working Group Collaboration). hep-ph/0106315

  2. K. Abe et al. (ACFA Linear Collider Working Group Collaboration). hep-ph/0109166

  3. T. Abe et al. (American Linear Collider Working Group Collaboration). hep-ex/0106056

  4. J. Brau et al. (ILC Collaboration). arXiv:0712.1950

  5. G. Aarons et al. (ILC Collaboration). arXiv:0709.1893

  6. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  7. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Nucl. Phys. B 238, 453–476 (1984)

    Article  ADS  Google Scholar 

  8. L.J. Hall, D. Pinner, J.T. Ruderman, J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703

    Article  ADS  Google Scholar 

  9. F. Brummer, W. Buchmuller, J. High Energy Phys. 1107, 010 (2011). arXiv:1105.0802

    Article  ADS  Google Scholar 

  10. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1211, 147 (2012). arXiv:1209.6620

    Article  ADS  Google Scholar 

  11. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 718, 841–859 (2013). arXiv:1208.3144

    Article  ADS  Google Scholar 

  12. P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer et al., J. High Energy Phys. 1206, 098 (2012). arXiv:1204.4199

    Article  ADS  Google Scholar 

  13. H. Baer et al. (ILC Collaboration), International Linear Collider Technical Design Report—Volume 1: Physics at the International Linear Collider (2012)

    Google Scholar 

  14. W. Oller, H. Eberl, W. Majerotto, Phys. Rev. D 71, 115002 (2005). hep-ph/0504109

    Article  ADS  Google Scholar 

  15. T. Fritzsche, W. Hollik, Nucl. Phys. Proc. Suppl. 135, 102–106 (2004). hep-ph/0407095

    Article  ADS  Google Scholar 

  16. W. Kilian, J. Reuter, T. Robens, Eur. Phys. J. C 48, 389–400 (2006). hep-ph/0607127

    Article  ADS  Google Scholar 

  17. T. Robens, J. Kalinowski, K. Rolbiecki, W. Kilian, J. Reuter, Acta Phys. Pol. B 39, 1705–1714 (2008). arXiv:0803.4161

    ADS  Google Scholar 

  18. A. Bharucha, A. Fowler, G. Moortgat-Pick, G. Weiglein. arXiv:1211.3134

  19. T. Fritzsche, Ph.D. thesis, Universität Karlsruhe (2005)

  20. A. Fowler, G. Weiglein, J. High Energy Phys. 1001, 108 (2010). arXiv:0909.5165

    Article  ADS  Google Scholar 

  21. A. Fowler, Ph.D. thesis, Durham University (2010)

  22. A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu. arXiv:1107.5218

  23. S. Heinemeyer, F. von der Pahlen, C. Schappacher, Eur. Phys. J. C 72, 1892 (2012). arXiv:1112.0760

    Article  ADS  Google Scholar 

  24. A. Bharucha, S. Heinemeyer, F. von der Pahlen, C. Schappacher. arXiv:1208.4106

  25. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75–263 (1985)

    Article  ADS  Google Scholar 

  26. S. Choi, A. Djouadi, M. Guchait, J. Kalinowski, H. Song et al., Eur. Phys. J. C 14, 535–546 (2000). hep-ph/0002033

    Article  ADS  Google Scholar 

  27. J. Kublbeck, M. Bohm, A. Denner, Comput. Phys. Commun. 60, 165–180 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Denner, H. Eck, O. Hahn, J. Kublbeck, Nucl. Phys. B 387, 467–484 (1992)

    Article  ADS  Google Scholar 

  29. J. Kublbeck, H. Eck, R. Mertig, Nucl. Phys. Proc. Suppl. 29A, 204–208 (1992)

    ADS  Google Scholar 

  30. T. Hahn, Comput. Phys. Commun. 140, 418–431 (2001). hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  31. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54–68 (2002). hep-ph/0105349

    Article  ADS  MATH  Google Scholar 

  32. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153–165 (1999). hep-ph/9807565

    Article  ADS  Google Scholar 

  33. T. Hahn, Comput. Phys. Commun. 178, 217–221 (2008). hep-ph/0611273

    Article  ADS  Google Scholar 

  34. T. Hahn, M. Rauch, Nucl. Phys. Proc. Suppl. 157, 236–240 (2006). hep-ph/0601248

    Article  ADS  Google Scholar 

  35. W. Siegel, Phys. Lett. B 84, 193 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  36. W. Siegel, Phys. Lett. B 94, 37 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  37. D. Stockinger, J. High Energy Phys. 0503, 076 (2005). hep-ph/0503129

    Article  MathSciNet  ADS  Google Scholar 

  38. F. del Aguila, A. Culatti, R. Munoz Tapia, M. Perez-Victoria, Nucl. Phys. B 537, 561–585 (1999). hep-ph/9806451

    Article  ADS  MATH  Google Scholar 

  39. A. Lahanas, K. Tamvakis, N. Tracas, Phys. Lett. B 324, 387–396 (1994). hep-ph/9312251

    Article  ADS  Google Scholar 

  40. D. Pierce, A. Papadopoulos, Phys. Rev. D 50, 565–570 (1994). hep-ph/9312248

    Article  ADS  Google Scholar 

  41. D. Pierce, A. Papadopoulos, Nucl. Phys. B 430, 278–294 (1994). hep-ph/9403240

    Article  ADS  Google Scholar 

  42. H. Eberl, M. Kincel, W. Majerotto, Y. Yamada, Phys. Rev. D 64, 115013 (2001). hep-ph/0104109

    Article  ADS  Google Scholar 

  43. T. Fritzsche, W. Hollik, Eur. Phys. J. C 24, 619–629 (2002). hep-ph/0203159

    Article  Google Scholar 

  44. W. Oller, H. Eberl, W. Majerotto, C. Weber, Eur. Phys. J. C 29, 563–572 (2003). hep-ph/0304006

    Article  ADS  Google Scholar 

  45. M. Drees, W. Hollik, Q. Xu, J. High Energy Phys. 0702, 032 (2007). hep-ph/0610267

    Article  ADS  Google Scholar 

  46. R. Schofbeck, H. Eberl, Phys. Lett. B 649, 67–72 (2007). hep-ph/0612276

    Article  ADS  Google Scholar 

  47. R. Schofbeck, H. Eberl, Eur. Phys. J. C 53, 621–626 (2008). arXiv:0706.0781

    Article  ADS  Google Scholar 

  48. K. Rolbiecki, J. Kalinowski, Phys. Rev. D 76, 115006 (2007). arXiv:0709.2994

    Article  ADS  Google Scholar 

  49. H. Eberl, T. Gajdosik, W. Majerotto, B. Schrausser, Phys. Lett. B 618, 171–181 (2005). hep-ph/0502112

    Article  ADS  Google Scholar 

  50. P. Osland, A. Vereshagin, Phys. Rev. D 76, 036001 (2007). arXiv:0704.2165

    Article  ADS  Google Scholar 

  51. K. Desch, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki, W. Stirling, J. High Energy Phys. 0612, 007 (2006). hep-ph/0607104

    Article  ADS  Google Scholar 

  52. F. James, M. Roos, Comput. Phys. Commun. 10, 343–367 (1975)

    Article  ADS  Google Scholar 

  53. F. James, CERN Program Library Long Writeup D506 (1994)

  54. G. Aad et al. (ATLAS Collaboration). arXiv:1208.0949

  55. S. Chatrchyan et al. (CMS Collaboration). arXiv:1207.1798

  56. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  57. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). hep-ph/9812472

    ADS  Google Scholar 

  58. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). hep-ph/0212020

    Article  ADS  Google Scholar 

  59. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., J. High Energy Phys. 0702, 047 (2007). hep-ph/0611326

    Article  ADS  Google Scholar 

  60. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214

    Article  ADS  Google Scholar 

  61. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235

    Article  ADS  Google Scholar 

  62. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367–382 (2007). hep-ph/0607059

    Article  ADS  MATH  Google Scholar 

  63. G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees et al., Comput. Phys. Commun. 182, 842–856 (2011). arXiv:1004.1092

    Article  ADS  MATH  Google Scholar 

  64. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538

    Article  ADS  Google Scholar 

  65. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110, 021801 (2013). arXiv:1211.2674

    Article  ADS  Google Scholar 

  66. B. O’Leary et al. (SuperB Collaboration). arXiv:1008.1541

  67. G. Weiglein et al. (LHC/LC Study Group Collaboration), Phys. Rep. 426, 47–358 (2006). hep-ph/0410364

    Article  Google Scholar 

  68. R. Carey, K. Lynch, J. Miller, B. Roberts, W. Morse et al., Preprint, FERMILAB-PROPOSAL-0989, 2009

Download references

Acknowledgements

The authors gratefully acknowledge support of the DFG through the grant SFB 676, “Particles, Strings, and the Early Universe”, as well as the Helmholtz Alliance, “Physics at the Terascale”. This work was also partially supported by the Polish National Science Centre under research grant DEC-2011/01/M/ST2/02466 and the MICINN, Spain, under contract FPA2010-17747; Consolider-Ingenio CPAN CSD2007- 00042. KR thanks as well the Comunidad de Madrid through Proyecto HEPHACOS S2009/ESP-1473 and the European Commission under contract PITN-GA-2009-237920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aoife Bharucha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharucha, A., Kalinowski, J., Moortgat-Pick, G. et al. One-loop effects on MSSM parameter determination via chargino production at the LC. Eur. Phys. J. C 73, 2446 (2013). https://doi.org/10.1140/epjc/s10052-013-2446-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2446-2

Keywords

Navigation