Skip to main content
Log in

The Higgs mass beyond the CMSSM

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The apparent discovery of a Higgs boson with mass ∼125 GeV has had a significant impact on the constrained minimal supersymmetric extension of the Standard Model (the CMSSM). Much of the low-mass parameter space in the CMSSM has been excluded by supersymmetric particle searches at the LHC as well as by the Higgs mass measurement and the emergent signal for B s μ + μ . Here, we consider the impact of these recent LHC results on several variants of the CMSSM with a primary focus on obtaining a Higgs mass of ∼125 GeV. In particular, we consider the one- and two-parameter extensions of the CMSSM with one or both of the Higgs masses set independently of the common sfermion mass, m 0 (the NUHM1,2). We also consider the one-parameter extension of the CMSSM in which the input universality scale M in is below the GUT scale (the sub-GUT CMSSM). Finally, we reconsider mSUGRA models with sub-GUT universality, which have the same number of parameters as the CMSSM. We find that when M in<M GUT large regions of parameter space open up where the relic density of neutralinos can successfully account for dark matter with a Higgs boson mass ∼125 GeV. Interestingly, we find that the preferred range of the A-term in sub-GUT mSUGRA models straddles that predicted by the simplest Polonyi model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Historically, this sign of μ has been favoured by the supersymmetric interpretation of g μ −2 (we display g μ −2-compatible regions in Fig. 2 but not in subsequent figures) and to facilitate compatibility with b. However, since the LHC constraints now disfavour regions of the CMSSM parameter space that ‘explain’ the g μ −2 discrepancy (as seen in Fig. 2), this assumption should be taken with a grain of salt.

  2. Because of the combination of recent experimental constraints, we are forced to consider substantially larger ranges in the displayed supersymmetric parameters such as m 0 and m 1/2. Therefore, here and in many other figures, for reasons of visibility we shade wider strips where 0.06<Ω χ h 2<0.2.

  3. As discussed in [38], this limit is generally stronger than other direct searches for supersymmetry at the LHC in the models studied, and is largely independent of tanβ and A 0. Based on the analysis in [130], in the upper left panel of Fig. 2 we have assumed that the constraint published in [128] is independent of m 1/2 when extrapolated to lower m 0.

  4. We recall that the focus-point strip is excluded by the XENON100 upper limit on spin-independent dark matter scattering.

  5. The width of the structure is enhanced for visibility by colouring the area where 0.06<Ω χ h 2<0.2.

References

  1. M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234

    Article  ADS  Google Scholar 

  2. H. Baer, M. Brhlik, Phys. Rev. D 53, 597 (1996). arXiv:hep-ph/9508321

    Article  ADS  Google Scholar 

  3. H. Baer, M. Brhlik, Phys. Rev. D 57, 567 (1998). arXiv:hep-ph/9706509

    Article  ADS  Google Scholar 

  4. H. Baer, M. Brhlik, M.A. Diaz, J. Ferrandis, P. Mercadante, P. Quintana, X. Tata, Phys. Rev. D 63, 015007 (2001). arXiv:hep-ph/0005027

    Article  ADS  Google Scholar 

  5. G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49, 6173 (1994). arXiv:hep-ph/9312272

    Article  ADS  Google Scholar 

  6. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 388, 97 (1996). arXiv:hep-ph/9607292

    Article  ADS  Google Scholar 

  7. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 413, 355 (1997). arXiv:hep-ph/9705444

    Article  ADS  Google Scholar 

  8. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Schmitt, Phys. Rev. D 58, 095002 (1998). arXiv:hep-ph/9801445

    Article  ADS  Google Scholar 

  9. V.D. Barger, C. Kao, Phys. Rev. D 57, 3131 (1998). arXiv:hep-ph/9704403

    Article  ADS  Google Scholar 

  10. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, Phys. Rev. D 62, 075010 (2000). arXiv:hep-ph/0004169

    Article  ADS  Google Scholar 

  11. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001). arXiv:hep-ph/0102098

    Article  ADS  Google Scholar 

  12. V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001). arXiv:hep-ph/0106189

    Article  ADS  Google Scholar 

  13. L. Roszkowski, R. Ruiz de Austri, T. Nihei, J. High Energy Phys. 0108, 024 (2001). arXiv:hep-ph/0106334

    Article  ADS  Google Scholar 

  14. A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316

    Article  ADS  Google Scholar 

  15. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 66, 035003 (2002). arXiv:hep-ph/0201001

    Article  ADS  Google Scholar 

  16. J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002). arXiv:hep-ph/0202110

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). arXiv:hep-ph/0205325

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Arnowitt, B. Dutta. arXiv:hep-ph/0211417

  19. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 565, 176 (2003). arXiv:hep-ph/0303043

    Article  ADS  Google Scholar 

  20. H. Baer, C. Balazs, J. Cosmol. Astropart. Phys. 0305, 006 (2003). arXiv:hep-ph/0303114

    Article  ADS  Google Scholar 

  21. A.B. Lahanas, D.V. Nanopoulos, Phys. Lett. B 568, 55 (2003). arXiv:hep-ph/0303130

    Article  ADS  Google Scholar 

  22. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 68, 035005 (2003). arXiv:hep-ph/0303201

    Article  ADS  Google Scholar 

  23. C. Munoz, Int. J. Mod. Phys. A 19, 3093 (2004). arXiv:hep-ph/0309346

    Article  ADS  Google Scholar 

  24. R. Arnowitt, B. Dutta, B. Hu. arXiv:hep-ph/0310103

  25. J. Ellis, K.A. Olive, in Particle dark matter, ed. by G. Bertone, pp. 142–163. arXiv:1001.3651 [astro-ph.CO]

  26. The Muon g-2 Collaboration, Phys. Rev. Lett. 92, 161802 (2004). hep-ex/0401008

    Article  Google Scholar 

  27. G. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

    Article  ADS  Google Scholar 

  28. ATLAS Collaboration, https://cdsweb.cern.ch/record/1432199/files/ATLAS-CONF-2012-033.pdf

  29. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1210, 018 (2012). arXiv:1207.1798 [hep-ex]

    Article  ADS  Google Scholar 

  30. S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.1898 [hep-ex]

  31. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  32. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  33. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  34. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  35. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  36. M. Frank et al., J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  37. http://www.feynhiggs.de

  38. O. Buchmueller, et al., arXiv:1207.7315 [hep-ph]

  39. C. Strege, G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri, R. Trotta, J. Cosmol. Astropart. Phys. 1203, 030 (2012). arXiv:1112.4192 [hep-ph]

    Article  ADS  Google Scholar 

  40. P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer, C. Hensel, M. Kramer, N. Nguyen et al., J. High Energy Phys. 1206, 098 (2012). arXiv:1204.4199 [hep-ph]

    Article  ADS  Google Scholar 

  41. A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E.M. Sessolo, S. Trojanowski, Y.-L.S. Tsai, arXiv:1206.0264 [hep-ph]

  42. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, arXiv:1206.2633 [hep-ph] and references therein

  43. C. Strege, G. Bertone, F. Feroz, M. Fornasa, R.R. de Austri, R. Trotta, arXiv:1212.2636 [hep-ph]

  44. O. Buchmueller et al., Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564 [hep-ph]

    Article  ADS  Google Scholar 

  45. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    Article  ADS  Google Scholar 

  46. J.L. Feng, K.T. Matchev, D. Sanford, Phys. Rev. D 85, 075007 (2012). arXiv:1112.3021 [hep-ph]

    Article  ADS  Google Scholar 

  47. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Phys. Lett. B 710, 207 (2012). arXiv:1112.3024 [hep-ph]

    Article  ADS  Google Scholar 

  48. S. Heinemeyer, O. Stal, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  49. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  50. P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph]

    Article  ADS  Google Scholar 

  51. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Phys. Rev. D 85, 075001 (2012). arXiv:1112.3645 [hep-ph]

    Article  ADS  Google Scholar 

  52. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647 [hep-ph]

    Article  ADS  Google Scholar 

  53. J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665 (2012). arXiv:1112.4391 [hep-ph]

    Article  ADS  Google Scholar 

  54. L. Aparicio, D.G. Cerdeno, L.E. Ibanez, J. High Energy Phys. 1204, 126 (2012). arXiv:1202.0822 [hep-ph]

    Article  ADS  Google Scholar 

  55. H. Baer, V. Barger, A. Mustafayev, J. High Energy Phys. 1205, 091 (2012). arXiv:1202.4038 [hep-ph]

    Article  ADS  Google Scholar 

  56. C. Balazs, A. Buckley, D. Carter, B. Farmer, M. White, arXiv:1205.1568 [hep-ph]

  57. D. Ghosh, M. Guchait, S. Raychaudhuri, D. Sengupta, Phys. Rev. D 86, 055007 (2012). arXiv:1205.2283 [hep-ph]

    Article  ADS  Google Scholar 

  58. J. Ellis, K.A. Olive, Eur. Phys. J. C 72, 2005 (2012). arXiv:1202.3262 [hep-ph]

    Article  ADS  Google Scholar 

  59. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 713, 387 (2012). arXiv:1204.0735 [hep-ex]

    Article  ADS  Google Scholar 

  60. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 239903 (2011)

    Article  ADS  Google Scholar 

  61. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 191801 (2011). arXiv:1107.2304 [hep-ex]

    Article  ADS  Google Scholar 

  62. M. Rescigno, https://indico.cern.ch/getFile.py/access?contribId=28&sessionId=7&resId=1&materialId=slides&confId=143360

  63. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 191802 (2011). arXiv:1107.5834 [hep-ex]

    Article  ADS  Google Scholar 

  64. R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 699, 330 (2011). arXiv:1103.2465 [hep-ex]

    Article  ADS  Google Scholar 

  65. R. Aaij et al. (LHCb Collaboration), arXiv:1203.4493 [hep-ex]

  66. ATLAS, CMS, and LHCb Collaborations, http://cdsweb.cern.ch/record/1452186/files/LHCb-CONF-2012-017.pdf

  67. R. Aaij et al. (LHCb Collaboration), arXiv:1211.2674

  68. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, Phys. Rev. D 71, 095008 (2005). arXiv:hep-ph/0412059

    Article  ADS  Google Scholar 

  69. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, J. High Energy Phys. 0507, 065 (2005). arXiv:hep-ph/0504001

    Article  ADS  Google Scholar 

  70. J.R. Ellis, K.A. Olive, P. Sandick, Phys. Rev. D 78, 075012 (2008). arXiv:0805.2343 [hep-ph]

    Article  ADS  Google Scholar 

  71. D. Matalliotakis, H.P. Nilles, Nucl. Phys. B 435, 115 (1995). arXiv:hep-ph/9407251

    Article  ADS  Google Scholar 

  72. M. Olechowski, S. Pokorski, Phys. Lett. B 344, 201 (1995). arXiv:hep-ph/9407404

    Article  ADS  Google Scholar 

  73. V. Berezinsky, A. Bottino, J. Ellis, N. Fornengo, G. Mignola, S. Scopel, Astropart. Phys. 5, 1 (1996). arXiv:hep-ph/9508249

    Article  ADS  Google Scholar 

  74. M. Drees, M. Nojiri, D. Roy, Y. Yamada, Phys. Rev. D 56, 276 (1997) [Erratum: Phys. Rev. D 64, 039901 (1997)]. arXiv:hep-ph/9701219

    Article  ADS  Google Scholar 

  75. M. Drees, Y. Kim, M. Nojiri, D. Toya, K. Hasuko, T. Kobayashi, Phys. Rev. D 63, 035008 (2001). arXiv:hep-ph/0007202

    Article  ADS  Google Scholar 

  76. P. Nath, R. Arnowitt, Phys. Rev. D 56, 2820 (1997). arXiv:hep-ph/9701301

    Article  ADS  Google Scholar 

  77. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Schmitt, Phys. Rev. D 58, 095002 (1998). arXiv:hep-ph/9801445

    Article  ADS  Google Scholar 

  78. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, Phys. Rev. D 62, 075010 (2000). arXiv:hep-ph/0004169

    Article  ADS  Google Scholar 

  79. A. Bottino, F. Donato, N. Fornengo, S. Scopel, Phys. Rev. D 63, 125003 (2001). arXiv:hep-ph/0010203

    Article  ADS  Google Scholar 

  80. S. Profumo, Phys. Rev. D 68, 015006 (2003). arXiv:hep-ph/0304071

    Article  ADS  Google Scholar 

  81. D. Cerdeno, C. Munoz, J. High Energy Phys. 0410, 015 (2004). arXiv:hep-ph/0405057

    Article  MathSciNet  ADS  Google Scholar 

  82. J. Ellis, K. Olive, Y. Santoso, Phys. Lett. B 539, 107 (2002). arXiv:hep-ph/0204192

    Article  ADS  Google Scholar 

  83. J.R. Ellis, T. Falk, K.A. Olive, Y. Santoso, Nucl. Phys. B 652, 259 (2003). arXiv:hep-ph/0210205

    Article  ADS  Google Scholar 

  84. J.R. Ellis, K.A. Olive, P. Sandick, Phys. Lett. B 642, 389 (2006). arXiv:hep-ph/0607002

    Article  ADS  MATH  Google Scholar 

  85. J.R. Ellis, K.A. Olive, P. Sandick, J. High Energy Phys. 0706, 079 (2007). arXiv:0704.3446 [hep-ph]

    Article  ADS  Google Scholar 

  86. J.R. Ellis, K.A. Olive, P. Sandick, J. High Energy Phys. 0808, 013 (2008). arXiv:0801.1651 [hep-ph]

    Article  ADS  Google Scholar 

  87. E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen, S. Ferrara, L. Girardello, Phys. Lett. B 79, 231 (1978)

    Article  ADS  Google Scholar 

  88. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, P. van Nieuwenhuizen, Nucl. Phys. B 147, 105 (1979)

    Article  ADS  Google Scholar 

  89. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  90. A. Brignole, L.E. Ibanez, C. Munoz, in Perspectives on Supersymmetry, ed. by G.L. Kane, pp. 125–148. arXiv:hep-ph/9707209

  91. A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  92. R.L. Arnowitt, A.H. Chamseddine, P. Nath, Phys. Rev. Lett. 50, 232 (1983)

    Article  ADS  Google Scholar 

  93. R. Arnowitt, A.H. Chamseddine, P. Nath. arXiv:1206.3175 [physics.hist-ph]

  94. R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119, 343 (1982)

    Article  ADS  Google Scholar 

  95. J. Polonyi, Budapest preprint KFKI-1977-93, 1977

  96. V.D. Barger, M.S. Berger, P. Ohmann, Phys. Rev. D 49, 4908 (1994). arXiv:hep-ph/9311269

    Article  ADS  Google Scholar 

  97. W. de Boer, R. Ehret, D.I. Kazakov, Z. Phys. C 67, 647 (1995). arXiv:hep-ph/9405342

    Article  ADS  Google Scholar 

  98. M. Carena, J.R. Ellis, A. Pilaftsis, C.E. Wagner, Nucl. Phys. B 625, 345 (2002). arXiv:hep-ph/0111245

    Article  ADS  Google Scholar 

  99. E. Dudas, Y. Mambrini, A. Mustafayev, K.A. Olive. arXiv:1205.5988 [hep-ph]

  100. G.F. Giudice, A. Masiero, Phys. Lett. B 206, 480 (1988)

    Article  ADS  Google Scholar 

  101. L. Calibbi, Y. Mambrini, S.K. Vempati, J. High Energy Phys. 0709, 081 (2007). arXiv:0704.3518 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  102. L. Calibbi, A. Faccia, A. Masiero, S.K. Vempati, Phys. Rev. D 74, 116002 (2006). arXiv:hep-ph/0605139

    Article  ADS  Google Scholar 

  103. E. Carquin, J. Ellis, M.E. Gomez, S. Lola, J. Rodriguez-Quintero, J. High Energy Phys. 0905, 026 (2009). arXiv:0812.4243 [hep-ph]

    Article  ADS  Google Scholar 

  104. J. Ellis, A. Mustafayev, K.A. Olive, Eur. Phys. J. C 69, 201 (2010). arXiv:1003.3677 [hep-ph]

    Article  ADS  Google Scholar 

  105. J. Ellis, A. Mustafayev, K.A. Olive, Eur. Phys. J. C 69, 219 (2010). arXiv:1004.5399 [hep-ph]

    Article  ADS  Google Scholar 

  106. J. Ellis, A. Mustafayev, K.A. Olive, Eur. Phys. J. C 71, 1689 (2011). arXiv:1103.5140 [hep-ph]

    Article  ADS  Google Scholar 

  107. E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev, K.A. Olive. arXiv:1209.0499 [hep-ph]

  108. K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski, Nucl. Phys. B 718, 113 (2005). arXiv:hep-th/0503216

    Article  MathSciNet  ADS  MATH  Google Scholar 

  109. K. Choi, K.S. Jeong, K.i. Okumura, J. High Energy Phys. 0509, 039 (2005). arXiv:hep-ph/0504037

    Article  MathSciNet  ADS  Google Scholar 

  110. M. Endo, M. Yamaguchi, K. Yoshioka, Phys. Rev. D 72, 015004 (2005). arXiv:hep-ph/0504036

    Article  ADS  Google Scholar 

  111. A. Falkowski, O. Lebedev, Y. Mambrini, J. High Energy Phys. 0511, 034 (2005). arXiv:hep-ph/0507110

    Article  MathSciNet  ADS  Google Scholar 

  112. R. Kitano, Y. Nomura, Phys. Lett. B 631, 58 (2005). arXiv:hep-ph/0509039

    Article  ADS  Google Scholar 

  113. R. Kitano, Y. Nomura, Phys. Rev. D 73, 095004 (2006). arXiv:hep-ph/0602096

    Article  ADS  Google Scholar 

  114. A. Pierce, J. Thaler, J. High Energy Phys. 0609, 017 (2006). arXiv:hep-ph/0604192

    Article  ADS  Google Scholar 

  115. K. Kawagoe, M.M. Nojiri, Phys. Rev. D 74, 115011 (2006). arXiv:hep-ph/0606104

    Article  ADS  Google Scholar 

  116. H. Baer, E.-K. Park, X. Tata, T.T. Wang, J. High Energy Phys. 0608, 041 (2006). arXiv:hep-ph/0604253

    ADS  MATH  Google Scholar 

  117. K. Choi, K.Y. Lee, Y. Shimizu, Y.G. Kim, K.i. Okumura, J. Cosmol. Astropart. Phys. 0612, 017 (2006). arXiv:hep-ph/0609132

    Article  ADS  Google Scholar 

  118. O. Lebedev, V. Lowen, Y. Mambrini, H.P. Nilles, M. Ratz, J. High Energy Phys. 0702, 063 (2007). arXiv:hep-ph/0612035

    Article  MathSciNet  ADS  Google Scholar 

  119. M. Monaco, M. Nardecchia, A. Romanino, R. Ziegler, J. High Energy Phys. 1110, 022 (2011). arXiv:1108.1706 [hep-ph]

    Article  ADS  Google Scholar 

  120. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]

    Article  ADS  Google Scholar 

  121. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  122. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  123. E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549 [astro-ph.CO]

    Article  ADS  Google Scholar 

  124. S. Chen et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001). arXiv:hep-ex/0108032

    Article  ADS  Google Scholar 

  125. P. Koppenburg et al. (Belle Collaboration), Phys. Rev. Lett. 93, 061803 (2004). arXiv:hep-ex/0403004

    Article  ADS  Google Scholar 

  126. B. Aubert et al. (BaBar Collaboration), arXiv:hep-ex/0207076

  127. E. Barberio et al. (Heavy Flavor Averaging Group (HFAG)). arXiv:hep-ex/0603003

  128. ATLAS Collaboration, https://cdsweb.cern.ch/record/1472710/files/ATLAS-CONF-2012-109.pdf

  129. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 35, 1–20 (2004). hep-ex/0401026

    Article  ADS  Google Scholar 

  130. M. Citron, J. Ellis, F. Luo, J. Marrouche, K.A. Olive, K.J. de Vries. arXiv:1212.2886 [hep-ph]

  131. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 573, 162 (2003). arXiv:hep-ph/0305212

    Article  ADS  MATH  Google Scholar 

  132. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 70, 055005 (2004). arXiv:hep-ph/0405110

    Article  ADS  Google Scholar 

  133. O. Buchmueller et al., Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 [hep-ph]

    Article  ADS  Google Scholar 

  134. O. Buchmueller et al., Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 [hep-ph]

    Article  ADS  Google Scholar 

  135. O. Buchmueller et al., Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 [hep-ph]

    Article  ADS  Google Scholar 

  136. S.P. Martin, Phys. Rev. D 75, 115005 (2007). hep-ph/0703097 [hep-ph]

    Article  ADS  Google Scholar 

  137. S.P. Martin, Phys. Rev. D 78, 055019 (2008). arXiv:0807.2820 [hep-ph]

    Article  ADS  Google Scholar 

  138. T.J. LeCompte, S.P. Martin, Phys. Rev. D 84, 015004 (2011). arXiv:1105.4304 [hep-ph]

    Article  ADS  Google Scholar 

  139. T.J. LeCompte, S.P. Martin, Phys. Rev. D 85, 035023 (2012). arXiv:1111.6897 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of J.E. and F.L. was supported in part by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352: this also supported visits by K.A.O. to the CERN TH Division, which he thanks for its hospitality. The work of F.L. and K.A.O. was supported in part by DOE grant DE-FG02-94ER-40823 at the University of Minnesota, and the work of F.L. was also supported in part by a Doctoral Dissertation Fellowship at the University of Minnesota. P.S. gratefully acknowledges support and resources from the Center for High Performance Computing at the University of Utah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pearl Sandick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J., Luo, F., Olive, K.A. et al. The Higgs mass beyond the CMSSM. Eur. Phys. J. C 73, 2403 (2013). https://doi.org/10.1140/epjc/s10052-013-2403-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2403-0

Keywords

Navigation