Skip to main content
Log in

The CMSSM and NUHM1 in light of 7 TeV LHC, B s μ + μ and XENON100 data

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We make a frequentist analysis of the parameter space of the CMSSM and NUHM1, using a Markov Chain Monte Carlo (MCMC) with 95 (221) million points to sample the CMSSM (NUHM1) parameter spaces. Our analysis includes the ATLAS search for supersymmetric jets +  signals using ∼5/fb of LHC data at 7 TeV, which we apply using PYTHIA and a Delphes implementation that we validate in the relevant parameter regions of the CMSSM and NUHM1. Our analysis also includes the constraint imposed by searches for BR(B s μ + μ ) by LHCb, CMS, ATLAS and CDF, and the limit on spin-independent dark matter scattering from 225 live days of XENON100 data. We assume M h ∼125 GeV, and use a full set of electroweak precision and other flavour-physics observables, as well as the cold dark matter density constraint. The ATLAS5/fb constraint has relatively limited effects on the 68 and 95 % CL regions in the (m 0,m 1/2) planes of the CMSSM and NUHM1. The new BR(B s μ + μ ) constraint has greater impacts on these CL regions, and also impacts significantly the 68 and 95 % CL regions in the (M A ,tanβ) planes of both models, reducing the best-fit values of tanβ. The recent XENON100 data eliminate the focus-point region in the CMSSM and affect the 68 and 95 % CL regions in the NUHM1. In combination, these new constraints reduce the best-fit values of m 0,m 1/2 in the CMSSM, and increase the global χ 2 from 31.0 to 32.8, reducing the p-value from 12 % to 8.5 %. In the case of the NUHM1, they have little effect on the best-fit values of m 0,m 1/2, but increase the global χ 2 from 28.9 to 31.3, thereby reducing the p-value from 15 % to 9.1 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. We do not include the isospin asymmetry in BK (∗) μ + μ decays [116] or the measurement of BR(BD (∗) τν) [117] in our analysis, in view of the present experimental and theoretical (long-distance) uncertainties.

  2. We have made a similar validation analysis for the CMS α T search for jets +  events using ∼1/fb of data at 7 TeV [118]. We do not discuss this validation in detail, as it does not contribute to the likelihood function analyzed here, but it does validate a posteriori our previous treatments [1, 2] of the CMS α T analysis. It also indicates that the CMS sensitivity with 5/fb of data at 7 TeV [60, 61] is similar to the ATLAS 5/fb jets +  data discussed here.

  3. The different sizes of the error bars, here and in subsequent validation plots, are due to PYTHIA failing for varying numbers of points.

  4. Except that varying μ affects the masses and mixings of third-generation squarks, but the dominant LHC jets +  searches are less sensitive to these.

  5. We note in passing that one expects \(\mathcal{A}_{\Delta\varGamma} = +1\) also in these models.

  6. This could also be inferred from Figs. 7 and 9 in [54].

  7. The relic density may also be brought into the WMAP range because the \(\tilde{\chi}^{0}_{1}\) acquires a relatively large higgsino component, another possibility made possible by the variation in μ that is possible in the NUHM1.

  8. We note that the Belle Collaboration has recently reported a new measurement of BR(B u τν τ ) that is in better agreement with the Standard Model and the classes of supersymmetric models discussed here [122].

  9. We see in both panels of Fig. 8 ‘archipelagos’ at large M A that might evolve with more sampling into connected regions allowed at the 95 % CL. In the NUHM1, this region is mainly populated by the points with small m 0 and large m 1/2 visible in the corresponding panel of Fig. 6.

  10. We display results for \(m_{\tilde{\chi}^{0}_{1}} \le1~\mathrm{TeV}\) only, because results from XENON100 are not published for larger masses.

References

  1. O. Buchmueller et al., Eur. Phys. J. C 72, 1878 (2012). arXiv:1110.3568 [hep-ph]

    Article  ADS  Google Scholar 

  2. O. Buchmueller et al., Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564 [hep-ph]

    Article  ADS  Google Scholar 

  3. P. Bechtle et al., arXiv:1102.4693 [hep-ph]

  4. M. Farina, M. Kadastik, D. Pappadopulo, J. Pata, M. Raidal, A. Strumia, Nucl. Phys. B 853, 607 (2011). arXiv:1104.3572 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  5. M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott, J. Stelzer, Eur. Phys. J. C 72, 2003 (2012). arXiv:1107.0975 [hep-ph]

    Article  ADS  Google Scholar 

  6. N. Bhattacharyya, A. Choudhury, A. Datta, Phys. Rev. D 84, 095006 (2011). arXiv:1107.1997 [hep-ph]

    Article  ADS  Google Scholar 

  7. A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.L.S. Tsai, Phys. Rev. D 85, 075012 (2012). arXiv:1111.6098 [hep-ph]

    Article  ADS  Google Scholar 

  8. T.J. LeCompte, S.P. Martin, Phys. Rev. D 85, 035023 (2012). arXiv:1111.6897 [hep-ph]

    Article  ADS  Google Scholar 

  9. L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, arXiv:1202.1503 [hep-ph]

  10. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  11. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  12. M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234

    Article  ADS  Google Scholar 

  13. G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49, 6173 (1994). arXiv:hep-ph/9312272

    Article  ADS  Google Scholar 

  14. H. Baer, M. Brhlik, Phys. Rev. D 53, 597 (1996). arXiv:hep-ph/9508321

    Article  ADS  Google Scholar 

  15. H. Baer, M. Brhlik, Phys. Rev. D 57, 567 (1998). arXiv:hep-ph/9706509

    Article  ADS  Google Scholar 

  16. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 388, 97 (1996). arXiv:hep-ph/9607292

    Article  ADS  Google Scholar 

  17. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 413, 355 (1997). arXiv:hep-ph/9705444

    Article  ADS  Google Scholar 

  18. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Schmitt, Phys. Rev. D 58, 095002 (1998). arXiv:hep-ph/9801445

    Article  ADS  Google Scholar 

  19. V.D. Barger, C. Kao, Phys. Rev. D 57, 3131 (1998). arXiv:hep-ph/9704403

    Article  ADS  Google Scholar 

  20. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, Phys. Rev. D 62, 075010 (2000). arXiv:hep-ph/0004169

    Article  ADS  Google Scholar 

  21. H. Baer, M. Brhlik, M.A. Diaz, J. Ferrandis, P. Mercadante, P. Quintana, X. Tata, Phys. Rev. D 63, 015007 (2001). arXiv:hep-ph/0005027

    Article  ADS  Google Scholar 

  22. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001). arXiv:hep-ph/0102098

    Article  ADS  Google Scholar 

  23. V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001). arXiv:hep-ph/0106189

    Article  ADS  Google Scholar 

  24. L. Roszkowski, R. Ruiz de Austri, T. Nihei, J. High Energy Phys. 0108, 024 (2001). arXiv:hep-ph/0106334

    Article  ADS  Google Scholar 

  25. A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316

    Article  ADS  Google Scholar 

  26. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 66, 035003 (2002). arXiv:hep-ph/0201001

    Article  ADS  Google Scholar 

  27. J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002). arXiv:hep-ph/0202110

    Article  ADS  MathSciNet  Google Scholar 

  28. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). arXiv:hep-ph/0205325

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Arnowitt, B. Dutta, arXiv:hep-ph/0211417

  30. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 565, 176 (2003). arXiv:hep-ph/0303043

    Article  ADS  Google Scholar 

  31. H. Baer, C. Balazs, J. Cosmol. Astropart. Phys. 0305, 006 (2003). arXiv:hep-ph/0303114

    Article  ADS  Google Scholar 

  32. A.B. Lahanas, D.V. Nanopoulos, Phys. Lett. B 568, 55 (2003). arXiv:hep-ph/0303130

    Article  ADS  Google Scholar 

  33. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 68, 035005 (2003). arXiv:hep-ph/0303201

    Article  ADS  Google Scholar 

  34. C. Munoz, Int. J. Mod. Phys. A 19, 3093 (2004). arXiv:hep-ph/0309346

    Article  ADS  Google Scholar 

  35. R. Arnowitt, B. Dutta, B. Hu, arXiv:hep-ph/0310103

  36. J. Ellis, K.A. Olive, in Particle Dark Matter, ed. by G. Bertone, pp. 142–163. arXiv:1001.3651 [astro-ph.CO]

  37. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, Phys. Rev. D 71, 095008 (2005). arXiv:hep-ph/0412059

    Article  ADS  Google Scholar 

  38. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, J. High Energy Phys. 0507, 065 (2005). hep-ph/0504001

    Article  ADS  Google Scholar 

  39. J.R. Ellis, K.A. Olive, P. Sandick, Phys. Rev. D 78, 075012 (2008). arXiv:0805.2343 [hep-ph]

    Article  ADS  Google Scholar 

  40. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    Article  ADS  Google Scholar 

  41. J.L. Feng, K.T. Matchev, D. Sanford, Phys. Rev. D 85, 075007 (2012). arXiv:1112.3021 [hep-ph]

    Article  ADS  Google Scholar 

  42. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Phys. Lett. B 710, 207 (2012). arXiv:1112.3024 [hep-ph]

    Article  ADS  Google Scholar 

  43. S. Heinemeyer, O. Stal, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  44. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  45. P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph]

    Article  ADS  Google Scholar 

  46. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Phys. Rev. D 85, 075001 (2012). arXiv:1112.3645 [hep-ph]

    Article  ADS  Google Scholar 

  47. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647 [hep-ph]

    Article  ADS  Google Scholar 

  48. J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665 (2012). arXiv:1112.4391 [hep-ph]

    Article  ADS  Google Scholar 

  49. N. Karagiannakis, G. Lazarides, C. Pallis, arXiv:1201.2111 [hep-ph]

  50. L. Aparicio, D.G. Cerdeno, L.E. Ibanez, J. High Energy Phys. 1204, 126 (2012). arXiv:1202.0822 [hep-ph]

    Article  ADS  Google Scholar 

  51. H. Baer, V. Barger, A. Mustafayev, J. High Energy Phys. 1205, 091 (2012). arXiv:1202.4038 [hep-ph]

    Article  ADS  Google Scholar 

  52. C. Balazs, A. Buckley, D. Carter, B. Farmer, M. White, arXiv:1205.1568 [hep-ph]

  53. D. Ghosh, M. Guchait, S. Raychaudhuri, D. Sengupta, arXiv:1205.2283 [hep-ph]

  54. J. Ellis, K.A. Olive, Eur. Phys. J. C 72, 2005 (2012). arXiv:1202.3262 [hep-ph]

    Article  ADS  Google Scholar 

  55. C. Strege, G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri, R. Trotta, J. Cosmol. Astropart. Phys. 1203, 030 (2012). arXiv:1112.4192 [hep-ph]

    Article  ADS  Google Scholar 

  56. P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer, C. Hensel, M. Kramer, N. Nguyen et al., J. High Energy Phys. 1206, 098 (2012). arXiv:1204.4199 [hep-ph]

    Article  ADS  Google Scholar 

  57. A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E.M. Sessolo, S. Trojanowski, Y.-L.S. Tsai, arXiv:1206.0264 [hep-ph]

  58. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, arXiv:1206.2633 [hep-ph] and references therein

  59. ATLAS Collaboration, https://cdsweb.cern.ch/record/1432199/files/ATLAS-CONF-2012-033.pdf. arXiv:1208.0949 [hep-ex]

  60. S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.1798 [hep-ex]

  61. S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.1898 [hep-ex]

  62. O. Buchmueller et al., Phys. Lett. B 657, 87 (2007). arXiv:0707.3447 [hep-ph]

    Article  ADS  Google Scholar 

  63. O. Buchmueller et al., J. High Energy Phys. 0809, 117 (2008). arXiv:0808.4128 [hep-ph]

    Article  ADS  Google Scholar 

  64. O. Buchmueller et al., Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph]

    Article  ADS  Google Scholar 

  65. O. Buchmueller et al., Phys. Rev. D 81, 035009 (2010). arXiv:0912.1036 [hep-ph]

    Article  ADS  Google Scholar 

  66. O. Buchmueller et al., Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 [hep-ph]

    Article  ADS  Google Scholar 

  67. O. Buchmueller et al., Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 [hep-ph]

    Article  ADS  Google Scholar 

  68. O. Buchmueller et al., Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 [hep-ph]

    Article  ADS  Google Scholar 

  69. G. Aad et al. (ATLAS Collaboration), arXiv:1204.0735 [hep-ex]

  70. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 239903 (2011)

    Article  ADS  Google Scholar 

  71. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 191801 (2011). Updated results presented at Aspen in Feb. 2012 by M. Rescigno, https://indico.cern.ch/getFile.py/access?contribId=28&sessionId=7&resId=1&materialId=slides&confId=143360. arXiv:1107.2304 [hep-ex]

    Article  ADS  Google Scholar 

  72. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 191802 (2011). arXiv:1107.5834 [hep-ex]

    Article  ADS  Google Scholar 

  73. R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 699, 330 (2011). arXiv:1103.2465 [hep-ex]

    Article  ADS  Google Scholar 

  74. R. Aaij et al. (LHCb Collaboration), arXiv:1203.4493 [hep-ex]

  75. For an official combination of the ATLAS, CMS and LHCb results, see: ATLAS, CMS, and LHCb Collaborations, http://cdsweb.cern.ch/record/1452186/files/LHCb-CONF-2012-017.pdf

  76. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 713, 68 (2012). arXiv:1202.4083 [hep-ex]

    Article  ADS  Google Scholar 

  77. E. Aprile et al. (XENON100 Collaboration), arXiv:1207.5988 [astro-ph.CO]

  78. For a description of Delphes, written by S. Ovyn and X. Rouby, see http://www.fynu.ucl.ac.be/users/s.ovyn/Delphes/index.html

  79. G. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008

    Article  ADS  Google Scholar 

  80. G. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

    Article  ADS  Google Scholar 

  81. F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011). arXiv:1101.2872 [hep-ph]

    Article  ADS  Google Scholar 

  82. D. Asner et al. (The Heavy Flavor Averaging Group), arXiv:1010.1589 [hep-ex], with updates available at http://www.slac.stanford.edu/xorg/hfag/osc/end_2009

  83. E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549 [astro-ph.CO]

    Article  ADS  Google Scholar 

  84. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group and the SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 [hep-ex], as updated in March 2012 on http://lepewwg.web.cern.ch/LEPEWWG/

  85. Tevatron Electroweak Working Group for the CDF and D0 Collaborations, arXiv:1107.5255 [hep-ex]

  86. ATLAS Collaboration, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-132/ATLAS-CONF-2011-132.pdf

  87. J. Incandela, Talk on behalf of the CMS Collaboration at CERN, 4th July, 2012, https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6125;

  88. CMS Collaboration, http://cdsweb.cern.ch/record/1460438/files/HIG-12-020-pas.pdf. Our analysis does not use the results published more recently by the CMS Collaboration

  89. F. Gianotti Talk on behalf of the ATLAS Collaboration at CERN, 4th July, 2012, https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6126

  90. ATLAS Collaboration, http://cdsweb.cern.ch/record/1460439/files/ATLAS-CONF-2012-093.pdf, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSOFFICE/higgs-preview.pdf

  91. T. Aaltonen et al. (CDF and D0 Collaborations), arXiv:1207.6436 [hep-ex]

  92. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex]

    Article  ADS  Google Scholar 

  93. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 26 (2012). arXiv:1202.1488 [hep-ex]

    Article  ADS  Google Scholar 

  94. For more information and updates, please see http://cern.ch/mastercode/

  95. S. Heinemeyer et al., J. High Energy Phys. 0608, 052 (2006). arXiv:hep-ph/0604147

    Article  ADS  Google Scholar 

  96. S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, J. High Energy Phys. 0804, 039 (2008). arXiv:0710.2972 [hep-ph]

    Article  ADS  Google Scholar 

  97. B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). arXiv:hep-ph/0104145

    Article  ADS  MATH  Google Scholar 

  98. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  99. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  100. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  101. M. Frank et al., J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  102. See http://www.feynhiggs.de

  103. G. Isidori, P. Paradisi, Phys. Lett. B 639, 499 (2006). arXiv:hep-ph/0605012

    Article  ADS  Google Scholar 

  104. G. Isidori, F. Mescia, P. Paradisi, D. Temes, Phys. Rev. D 75, 115019 (2007). arXiv:hep-ph/0703035 and references therein

    Article  ADS  Google Scholar 

  105. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059

    Article  ADS  MATH  Google Scholar 

  106. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 149, 103 (2002). arXiv:hep-ph/0112278

    Article  ADS  MATH  Google Scholar 

  107. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 174, 577 (2006). arXiv:hep-ph/0405253

    Article  ADS  MATH  Google Scholar 

  108. P. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123

    Article  ADS  Google Scholar 

  109. B. Allanach et al., Comput. Phys. Commun. 180, 8 (2009). arXiv:0801.0045 [hep-ph]

    Article  ADS  Google Scholar 

  110. F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  111. F. Mahmoudi, Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144 [hep-ph]

    Article  ADS  Google Scholar 

  112. D. Eriksson, F. Mahmoudi, O. Stal, J. High Energy Phys. 0811, 035 (2008). arXiv:0808.3551 [hep-ph]

    Article  ADS  Google Scholar 

  113. Information about this code is available from K.A. Olive: it contains important contributions from T. Falk, A. Ferstl, G. Ganis, F. Luo, A. Mustafayev, J. McDonald, K.A. Olive, P. Sandick, Y. Santoso and M. Srednicki

  114. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, E.A. Baltz, J. Cosmol. Astropart. Phys. 0407, 008 (2004). astro-ph/0406204

    Article  ADS  Google Scholar 

  115. P. Gondolo, J. Edsj, P. Ullio, L. Bergstrom, M. Schelke, E.A. Baltz, T. Bringmann, G. Duda, http://www.darksusy.org

  116. R. Aaij et al. (LHCb Collaboration), arXiv:1205.3422 [hep-ex]

  117. J.P. Lees et al. (BaBar Collaboration), arXiv:1205.5442 [hep-ex]

  118. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 221804 (2011). arXiv:1109.2352 [hep-ex]

    Article  ADS  Google Scholar 

  119. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]

    Article  ADS  Google Scholar 

  120. J. Ellis, K. Olive, Y. Santoso, Phys. Lett. B 539, 107 (2002). arXiv:hep-ph/0204192

    Article  ADS  Google Scholar 

  121. J.R. Ellis, T. Falk, K.A. Olive, Y. Santoso, Nucl. Phys. B 652, 259 (2003). arXiv:hep-ph/0210205

    Article  ADS  Google Scholar 

  122. Y.-M. Yook, for the Belle Collaboration, http://indico.cern.ch/getFile.py/access?contribId=573&sessionId=66&resId=0&materialId=slides&confId=181298

  123. A.J. Buras, M.V. Carlucci, S. Gori, G. Isidori, J. High Energy Phys. 1010, 009 (2010). arXiv:1005.5310 [hep-ph]

    Article  ADS  Google Scholar 

  124. K. de Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, N. Tuning, arXiv:1204.1735 [hep-ph]

  125. K. de Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, A. Pellegrino, N. Tuning, arXiv:1204.1737 [hep-ph]

  126. M.M. Pavan, I.I. Strakovsky, R.L. Workman, R.A. Arndt, PIN Newslett. 16, 110 (2002). hep-ph/0111066

    Google Scholar 

  127. M.M. Pavan, private communication

  128. R. Barate et al. (ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working Group for Higgs boson searches), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    Article  ADS  Google Scholar 

  129. S. Schael et al. (ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working Group for Higgs boson searches), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  130. S.S. AbdusSalam et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph]

    Article  ADS  Google Scholar 

  131. ATLAS Collaboration, http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-109

Download references

Acknowledgements

The work of O.B., M.C., J.E., J.M., S.N., K.A.O. and K.J.de V. is supported in part by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. The work of S.H. is supported in part by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Program under grant MultiDark CSD2009-00064. The work of K.A.O. is supported in part by DOE grant DE-FG02-94ER-40823 at the University of Minnesota. We thank Robert Fleischer for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Olive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchmueller, O., Cavanaugh, R., Citron, M. et al. The CMSSM and NUHM1 in light of 7 TeV LHC, B s μ + μ and XENON100 data. Eur. Phys. J. C 72, 2243 (2012). https://doi.org/10.1140/epjc/s10052-012-2243-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2243-3

Keywords

Navigation