Skip to main content
Log in

Model-independent extraction of |V tq | matrix elements from top-quark measurements at hadron colliders

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Current methods to extract the quark-mixing matrix element |V tb | from single-top-production measurements assume that |V tb |≫|V td |,|V ts |: top quarks decay into b quarks with 100 % branching fraction, s-channel single-top production is always accompanied by a b quark and initial-state contributions from d and s quarks in the t-channel production of single top quarks are neglected. Triggered by a recent measurement of the ratio \(R=\frac{|V_{tb}|^{2}}{|V_{td}|^{2}+|V_{ts}|^{2}+|V_{tb}|^{2}}=0.90 \pm 0.04\) performed by the D0 collaboration, we consider a |V tb | extraction method that takes into account non zero d- and s-quark contributions both in production and decay. We propose a strategy that allows to extract consistently and in a model-independent way the quark-mixing matrix elements |V td |, |V ts |, and |V tb | from the measurement of R and from single-top measured event yields. As an illustration, we apply our method to the Tevatron data using a CDF analysis of the measured single-top event yield with two jets in the final state, one of which is identified as a b-quark jet. We constrain the |V tq | matrix elements within a four-generation scenario by combining the results with those obtained from direct measurements in flavor physics and determine the preferred range for the top-quark decay width within different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The cross-section extraction in the CDF analysis assumes also R=1 for the \(t \bar{t}\) background estimate. While we cannot take this effect into account in our simplified analysis, it should be done in a complete one, as outlined in Sect. 2.

References

  1. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

  2. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  3. J. Charles et al. (The CKMfitter Group), Eur. Phys. J. C 41, 1 (2005). Updated at http://ckmfitter.in2p3.fr/

    Article  ADS  Google Scholar 

  4. J. Charles et al. (The CKMfitter Group), Phys. Rev. D 84, 033005 (2011). arXiv:1106.4041 [hep-ph]

    Article  ADS  Google Scholar 

  5. J. Alwall et al., Eur. Phys. J. C 49, 791 (2007)

    Article  ADS  Google Scholar 

  6. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 192003 (2008)

    Article  ADS  Google Scholar 

  7. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 107, 121802 (2011). arXiv:1106.5436 [hep-exp]

    Article  ADS  Google Scholar 

  8. M.S. Chanowitz, Phys. Rev. D 82, 035018 (2010). arXiv:1007.0043 [hep-ph]

    Article  ADS  Google Scholar 

  9. M.S. Chanowitz, Phys. Rev. D 79, 113008 (2009). arXiv:0904.3570 [hep-ph]

    Article  ADS  Google Scholar 

  10. O. Eberhardt, A. Lenz, J. Rohrwild, Phys. Rev. D 82, 095006 (2010). arXiv:1005.3505 [hep-ph]

    Article  ADS  Google Scholar 

  11. A.K. Alok, A. Dighe, D. London, Phys. Rev. D 83, 073008 (2011). arXiv:1011.2634 [hep-ph]

    Article  ADS  Google Scholar 

  12. A. Lister (CDF Collaboration), Search for heavy top-like quarks t′→Wq using lepton plus jets events in 1.96 TeV p pbar collisions. arXiv:0810.3349 [hep-ex]

  13. J. Conway (CDF Collaboration), CDF public conference note CDF/PUB/TOP/PUBLIC/10110

  14. The ATLAS Collaboration, Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at sqrt(s) = 7 TeV with the ATLAS detector. arXiv:1202.3389 [hep-ex]

  15. The ATLAS Collaboration, Search for pair production of a heavy quark decaying to a W boson and a b quark in the lepton + jets channel with the ATLAS detector. arXiv:1202.3076 [hep-ex]

  16. The ATLAS Collaboration, Search for fourth generation quarks decaying to \(W^{+} q W^{-} \bar{q} \rightarrow l^{+} l^{-} \nu \bar{\nu} q \bar{q}\) in pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\) with the ATLAS detector. ATLAS-CONF-2011-022

  17. The CMS Collaboration, Search for a heavy top-like quark in the dilepton final state in pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\). CMS-PAS-EXO-11-050

  18. The CMS Collaboration, Search for t′ pair production in lepton + jets channel. CMS-PAS-EXO-11-051

  19. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 104, 091801 (2010). arXiv:0912.1057 [hep-ex]

    Article  ADS  Google Scholar 

  20. T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. Lett. 106, 141803 (2011). arXiv:1101.5728 [hep-ex]

    Article  ADS  Google Scholar 

  21. G. Aad et al. (ATLAS Collaboration), Inclusive search for same-sign dilepton signatures in pp collisions at \(\sqrt{s} = 7~\mathrm{TeV}\) with the ATLAS detector. arXiv:1108.0366 [hep-ex]

  22. The CMS Collaboration, Search for a heavy bottom-like quark in pp collisions at \(\sqrt{s} = 7~\mbox{TeV}\). CMS-PAS-EXO-11-036

  23. The CMS Collaboration, Inclusive search for a fourth generation of quarks with the CMS experiment. CMS-PAS-EXO-11-054

  24. B.W. Harris et al., Phys. Rev. D 66, 054024 (2002)

    Article  ADS  Google Scholar 

  25. J. Campbell, K. Ellis, F. Tramontano, Phys. Rev. D 70, 094012 (2004)

    Article  ADS  Google Scholar 

  26. N. Kidonakis, Phys. Rev. D 81, 054028 (2010). arXiv:1001.5034 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, J. High Energy Phys. 0910, 042 (2009). arXiv:0907.3933 [hep-ph]

    Article  ADS  Google Scholar 

  28. J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 102, 182003 (2009). arXiv:0903.0005 [hep-ph]

    Article  ADS  Google Scholar 

  29. T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001). arXiv:hep-ph/0010017

    Article  ADS  MATH  Google Scholar 

  30. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002)

    Article  ADS  Google Scholar 

  31. P. Nason, J. High Energy Phys. 0411, 040 (2004)

    Article  ADS  Google Scholar 

  32. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, J. High Energy Phys. 0603, 092 (2006). arXiv:hep-ph/0512250

    Article  ADS  Google Scholar 

  33. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 0909, 111 (2009). arXiv:0907.4076 [hep-ph]

    Article  ADS  Google Scholar 

  34. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  35. J. Campbell, K. Ellis, MCFM—Monte Carlo for FeMtobarn processes. http://mcfm.fnal.gov/

  36. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  37. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885 [hep-ex]

    Article  ADS  Google Scholar 

  38. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 82, 112005 (2010). arXiv:1004.1181 [hep-ex]

    Article  ADS  Google Scholar 

  39. H. Lacker, A. Menzel, J. High Energy Phys. 1007, 006 (2010). arXiv:1003.4532 [hep-ph]

    Article  ADS  Google Scholar 

  40. J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009)

    Article  ADS  Google Scholar 

  41. M. Antonelli et al., Eur. Phys. J. C 69, 399 (2010). arXiv:1005.2323 [hep-ph]

    Article  ADS  Google Scholar 

  42. A. Lenz et al., Phys. Rev. D 83, 036004 (2011). arXiv:1008.1593 [hep-ph]

    Article  ADS  Google Scholar 

  43. E. Barberio et al. (Heavy Flavour Averaging Group), arXiv:0808.1297 [hep-ex] and online update at http://www.slac.stanford.edu/xorg/hfag updated for PDG 2009

  44. The LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, the LEP Electroweak Working Group, A combination of preliminary electroweak measurements and constraints on the standard model. arXiv:hep-ex/0612034v2

  45. V.M. Abazov et al. (D0 Collaboration), An improved determination of the width of the top quark. arXiv:1201.4156 [hep-ex]

  46. V.M. Abazov et al. (D0 Collaboration), Measurements of single top quark production cross sections and |V tb | in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96~\mathrm{TeV}\). arXiv:1108.3091 [hep-ex]

  47. The ATLAS Collaboration, Measurement of the t-channel single-top production cross section in 0.7 fb−1 of pp collisions at \(\sqrt{s}=7~\mbox{TeV}\) collected with the ATLAS detector. ATLAS-CONF-2011-101

  48. The CMS Collaboration, Measurement of t-channel single-top cross section in pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\). CMS PAS TOP-10-008

  49. M. Jezabek, J.H. Kühn, Nucl. Phys. B 314, 1 (1989)

    Article  ADS  Google Scholar 

  50. U. Langenfeld, S.-O. Moch, P. Uwer, in PoS ICHEP2010 (2010), 082

    Google Scholar 

  51. J.A. Aguilar-Saavedra, A. Onofre, Phys. Rev. D 83, 073003 (2011). arXiv:1002.4718 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been performed using the CKMfitter package. We are grateful for the support provided by the CKMfitter group. We would like to thank J. Wagner-Kuhr for useful discussions. F.M. would like to thank Jean-Marc Gérard for many useful discussions. A.M. is funded by the German Science Foundation (DFG). F.M. and M.Z. are funded by the Belgian Federal Office for Scientific, Technical and Cultural Affairs through Interuniversity Pole No. P6/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lacker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacker, H., Menzel, A., Spettel, F. et al. Model-independent extraction of |V tq | matrix elements from top-quark measurements at hadron colliders. Eur. Phys. J. C 72, 2048 (2012). https://doi.org/10.1140/epjc/s10052-012-2048-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2048-4

Keywords

Navigation