The European Physical Journal C

, 72:2025

Measurement of ϒ production in pp collisions at \(\sqrt{\boldsymbol{s}}=\boldsymbol{7}~\mathrm{TeV}\)

Authors

  • R. Aaij
    • Nikhef National Institute for Subatomic Physics
  • C. Abellan Beteta
    • Universitat de Barcelona
  • B. Adeva
    • Universidad de Santiago de Compostela
  • M. Adinolfi
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • C. Adrover
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • A. Affolder
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • Z. Ajaltouni
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • J. Albrecht
    • European Organization for Nuclear Research (CERN)
  • F. Alessio
    • European Organization for Nuclear Research (CERN)
  • M. Alexander
    • School of Physics and AstronomyUniversity of Glasgow
  • G. Alkhazov
    • Petersburg Nuclear Physics Institute (PNPI)
  • P. Alvarez Cartelle
    • Universidad de Santiago de Compostela
  • A. A. AlvesJr
    • Sezione INFN di Roma La Sapienza
  • S. Amato
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • Y. Amhis
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • J. Anderson
    • Physik-InstitutUniversität Zürich
  • R. B. Appleby
    • School of Physics and AstronomyUniversity of Manchester
  • O. Aquines Gutierrez
    • Max-Planck-Institut für Kernphysik (MPIK)
  • F. Archilli
    • Laboratori Nazionali dell’INFN di Frascati
    • European Organization for Nuclear Research (CERN)
  • L. Arrabito
    • CC-IN2P3, CNRS/IN2P3
  • A. Artamonov
    • Institute for High Energy Physics (IHEP)
  • M. Artuso
    • European Organization for Nuclear Research (CERN)
    • Syracuse University
  • E. Aslanides
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • G. Auriemma
    • Sezione INFN di Roma La Sapienza
  • S. Bachmann
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • J. J. Back
    • Department of PhysicsUniversity of Warwick
  • D. S. Bailey
    • School of Physics and AstronomyUniversity of Manchester
  • V. Balagura
    • Institute of Theoretical and Experimental Physics (ITEP)
    • European Organization for Nuclear Research (CERN)
  • W. Baldini
    • Sezione INFN di Ferrara
  • R. J. Barlow
    • School of Physics and AstronomyUniversity of Manchester
  • C. Barschel
    • European Organization for Nuclear Research (CERN)
  • S. Barsuk
    • LAL, Université Paris-SudCNRS/IN2P3
  • W. Barter
    • Cavendish LaboratoryUniversity of Cambridge
  • A. Bates
    • School of Physics and AstronomyUniversity of Glasgow
  • C. Bauer
    • Max-Planck-Institut für Kernphysik (MPIK)
  • Th. Bauer
    • Nikhef National Institute for Subatomic Physics
  • A. Bay
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • I. Bediaga
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • S. Belogurov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • K. Belous
    • Institute for High Energy Physics (IHEP)
  • I. Belyaev
    • Institute of Theoretical and Experimental Physics (ITEP)
  • E. Ben-Haim
    • LPNHE, Université Pierre et Marie Curie, Université Paris DiderotCNRS/IN2P3
  • M. Benayoun
    • LPNHE, Université Pierre et Marie Curie, Université Paris DiderotCNRS/IN2P3
  • G. Bencivenni
    • Laboratori Nazionali dell’INFN di Frascati
  • S. Benson
    • School of Physics and AstronomyUniversity of Edinburgh
  • J. Benton
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • R. Bernet
    • Physik-InstitutUniversität Zürich
  • M.-O. Bettler
    • Sezione INFN di Firenze
  • M. van Beuzekom
    • Nikhef National Institute for Subatomic Physics
  • A. Bien
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • S. Bifani
    • School of PhysicsUniversity College Dublin
  • T. Bird
    • School of Physics and AstronomyUniversity of Manchester
  • A. Bizzeti
    • Sezione INFN di Firenze
  • P. M. Bjørnstad
    • School of Physics and AstronomyUniversity of Manchester
  • T. Blake
    • European Organization for Nuclear Research (CERN)
  • F. Blanc
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • C. Blanks
    • Imperial College London
  • J. Blouw
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • S. Blusk
    • Syracuse University
  • A. Bobrov
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • V. Bocci
    • Sezione INFN di Roma La Sapienza
  • A. Bondar
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • N. Bondar
    • Petersburg Nuclear Physics Institute (PNPI)
  • W. Bonivento
    • Sezione INFN di Cagliari
  • S. Borghi
    • School of Physics and AstronomyUniversity of Glasgow
    • School of Physics and AstronomyUniversity of Manchester
  • A. Borgia
    • Syracuse University
  • T. J. V. Bowcock
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • C. Bozzi
    • Sezione INFN di Ferrara
  • T. Brambach
    • Fakultät PhysikTechnische Universität Dortmund
  • J. van den Brand
    • Nikhef National Institute for Subatomic Physics and Vrije Universiteit
  • J. Bressieux
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • D. Brett
    • School of Physics and AstronomyUniversity of Manchester
  • M. Britsch
    • Max-Planck-Institut für Kernphysik (MPIK)
  • T. Britton
    • Syracuse University
  • N. H. Brook
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • H. Brown
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • K. de Bruyn
    • Nikhef National Institute for Subatomic Physics
  • A. Büchler-Germann
    • Physik-InstitutUniversität Zürich
  • I. Burducea
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • A. Bursche
    • Physik-InstitutUniversität Zürich
  • J. Buytaert
    • European Organization for Nuclear Research (CERN)
  • S. Cadeddu
    • Sezione INFN di Cagliari
  • O. Callot
    • LAL, Université Paris-SudCNRS/IN2P3
  • M. Calvi
    • Sezione INFN di Milano Bicocca
  • M. Calvo Gomez
    • Universitat de Barcelona
  • A. Camboni
    • Universitat de Barcelona
  • P. Campana
    • Laboratori Nazionali dell’INFN di Frascati
    • European Organization for Nuclear Research (CERN)
  • A. Carbone
    • Sezione INFN di Bologna
  • G. Carboni
    • Sezione INFN di Roma Tor Vergata
  • R. Cardinale
    • Sezione INFN di Genova
    • European Organization for Nuclear Research (CERN)
  • A. Cardini
    • Sezione INFN di Cagliari
  • L. Carson
    • Imperial College London
  • K. Carvalho Akiba
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • G. Casse
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • M. Cattaneo
    • European Organization for Nuclear Research (CERN)
  • Ch. Cauet
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Charles
    • Department of PhysicsUniversity of Oxford
  • Ph. Charpentier
    • European Organization for Nuclear Research (CERN)
  • N. Chiapolini
    • Physik-InstitutUniversität Zürich
  • K. Ciba
    • European Organization for Nuclear Research (CERN)
  • X. Cid Vidal
    • Universidad de Santiago de Compostela
  • G. Ciezarek
    • Imperial College London
  • P. E. L. Clarke
    • European Organization for Nuclear Research (CERN)
    • School of Physics and AstronomyUniversity of Edinburgh
  • M. Clemencic
    • European Organization for Nuclear Research (CERN)
  • H. V. Cliff
    • Cavendish LaboratoryUniversity of Cambridge
  • J. Closier
    • European Organization for Nuclear Research (CERN)
  • C. Coca
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • V. Coco
    • Nikhef National Institute for Subatomic Physics
  • J. Cogan
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • P. Collins
    • European Organization for Nuclear Research (CERN)
  • A. Comerma-Montells
    • Universitat de Barcelona
  • F. Constantin
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • A. Contu
    • Department of PhysicsUniversity of Oxford
  • A. Cook
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • M. Coombes
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • G. Corti
    • European Organization for Nuclear Research (CERN)
  • B. Couturier
    • European Organization for Nuclear Research (CERN)
  • G. A. Cowan
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • R. Currie
    • School of Physics and AstronomyUniversity of Edinburgh
  • C. D’Ambrosio
    • European Organization for Nuclear Research (CERN)
  • P. David
    • LPNHE, Université Pierre et Marie Curie, Université Paris DiderotCNRS/IN2P3
  • P. N. Y. David
    • Nikhef National Institute for Subatomic Physics
  • I. De Bonis
    • LAPP, Université de SavoieCNRS/IN2P3
  • S. De Capua
    • Sezione INFN di Roma Tor Vergata
  • M. De Cian
    • Physik-InstitutUniversität Zürich
  • F. De Lorenzi
    • School of PhysicsUniversity College Dublin
  • J. M. De Miranda
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • L. De Paula
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • P. De Simone
    • Laboratori Nazionali dell’INFN di Frascati
  • D. Decamp
    • LAPP, Université de SavoieCNRS/IN2P3
  • M. Deckenhoff
    • Fakultät PhysikTechnische Universität Dortmund
  • H. Degaudenzi
    • European Organization for Nuclear Research (CERN)
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • L. Del Buono
    • LPNHE, Université Pierre et Marie Curie, Université Paris DiderotCNRS/IN2P3
  • C. Deplano
    • Sezione INFN di Cagliari
  • D. Derkach
    • Sezione INFN di Bologna
    • European Organization for Nuclear Research (CERN)
  • O. Deschamps
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • F. Dettori
    • Nikhef National Institute for Subatomic Physics and Vrije Universiteit
  • J. Dickens
    • Cavendish LaboratoryUniversity of Cambridge
  • H. Dijkstra
    • European Organization for Nuclear Research (CERN)
  • P. Diniz Batista
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • F. Domingo Bonal
    • Universitat de Barcelona
  • S. Donleavy
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • F. Dordei
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • A. Dosil Suárez
    • Universidad de Santiago de Compostela
  • D. Dossett
    • Department of PhysicsUniversity of Warwick
  • A. Dovbnya
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • F. Dupertuis
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • R. Dzhelyadin
    • Institute for High Energy Physics (IHEP)
  • A. Dziurda
    • Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
  • S. Easo
    • STFC Rutherford Appleton Laboratory
  • U. Egede
    • Imperial College London
  • V. Egorychev
    • Institute of Theoretical and Experimental Physics (ITEP)
  • S. Eidelman
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • D. van Eijk
    • Nikhef National Institute for Subatomic Physics
  • F. Eisele
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • S. Eisenhardt
    • School of Physics and AstronomyUniversity of Edinburgh
  • R. Ekelhof
    • Fakultät PhysikTechnische Universität Dortmund
  • L. Eklund
    • School of Physics and AstronomyUniversity of Glasgow
  • Ch. Elsasser
    • Physik-InstitutUniversität Zürich
  • D. Elsby
    • University of Birmingham
  • D. Esperante Pereira
    • Universidad de Santiago de Compostela
  • A. Falabella
    • Sezione INFN di Bologna
    • Sezione INFN di Ferrara
  • E. Fanchini
    • Sezione INFN di Milano Bicocca
  • C. Färber
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • G. Fardell
    • School of Physics and AstronomyUniversity of Edinburgh
  • C. Farinelli
    • Nikhef National Institute for Subatomic Physics
  • S. Farry
    • School of PhysicsUniversity College Dublin
  • V. Fave
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • V. Fernandez Albor
    • Universidad de Santiago de Compostela
  • M. Ferro-Luzzi
    • European Organization for Nuclear Research (CERN)
  • S. Filippov
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
  • C. Fitzpatrick
    • School of Physics and AstronomyUniversity of Edinburgh
  • M. Fontana
    • Max-Planck-Institut für Kernphysik (MPIK)
  • F. Fontanelli
    • Sezione INFN di Genova
  • R. Forty
    • European Organization for Nuclear Research (CERN)
  • O. Francisco
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • M. Frank
    • European Organization for Nuclear Research (CERN)
  • C. Frei
    • European Organization for Nuclear Research (CERN)
  • M. Frosini
    • Sezione INFN di Firenze
  • S. Furcas
    • Sezione INFN di Milano Bicocca
  • A. Gallas Torreira
    • Universidad de Santiago de Compostela
  • D. Galli
    • Sezione INFN di Bologna
  • M. Gandelman
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • P. Gandini
    • Department of PhysicsUniversity of Oxford
  • Y. Gao
    • Center for High Energy PhysicsTsinghua University
  • J-C. Garnier
    • European Organization for Nuclear Research (CERN)
  • J. Garofoli
    • Syracuse University
  • J. Garra Tico
    • Cavendish LaboratoryUniversity of Cambridge
  • L. Garrido
    • Universitat de Barcelona
  • D. Gascon
    • Universitat de Barcelona
  • C. Gaspar
    • European Organization for Nuclear Research (CERN)
  • R. Gauld
    • Department of PhysicsUniversity of Oxford
  • N. Gauvin
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. Gersabeck
    • European Organization for Nuclear Research (CERN)
  • T. Gershon
    • European Organization for Nuclear Research (CERN)
    • Department of PhysicsUniversity of Warwick
  • Ph. Ghez
    • LAPP, Université de SavoieCNRS/IN2P3
  • V. Gibson
    • Cavendish LaboratoryUniversity of Cambridge
  • V. V. Gligorov
    • European Organization for Nuclear Research (CERN)
  • C. Göbel
    • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • D. Golubkov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • A. Golutvin
    • Institute of Theoretical and Experimental Physics (ITEP)
    • European Organization for Nuclear Research (CERN)
    • Imperial College London
  • A. Gomes
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • H. Gordon
    • Department of PhysicsUniversity of Oxford
  • M. Grabalosa Gándara
    • Universitat de Barcelona
  • R. Graciani Diaz
    • Universitat de Barcelona
  • L. A. Granado Cardoso
    • European Organization for Nuclear Research (CERN)
  • E. Graugés
    • Universitat de Barcelona
  • G. Graziani
    • Sezione INFN di Firenze
  • A. Grecu
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • E. Greening
    • Department of PhysicsUniversity of Oxford
  • S. Gregson
    • Cavendish LaboratoryUniversity of Cambridge
  • B. Gui
    • Syracuse University
  • E. Gushchin
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
  • Yu. Guz
    • Institute for High Energy Physics (IHEP)
  • T. Gys
    • European Organization for Nuclear Research (CERN)
  • C. Hadjivasiliou
    • Syracuse University
  • G. Haefeli
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • C. Haen
    • European Organization for Nuclear Research (CERN)
  • S. C. Haines
    • Cavendish LaboratoryUniversity of Cambridge
  • T. Hampson
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • S. Hansmann-Menzemer
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • R. Harji
    • Imperial College London
  • N. Harnew
    • Department of PhysicsUniversity of Oxford
  • J. Harrison
    • School of Physics and AstronomyUniversity of Manchester
  • P. F. Harrison
    • Department of PhysicsUniversity of Warwick
  • T. Hartmann
    • Physikalisches InstitutUniversität Rostock
  • J. He
    • LAL, Université Paris-SudCNRS/IN2P3
  • V. Heijne
    • Nikhef National Institute for Subatomic Physics
  • K. Hennessy
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • P. Henrard
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • J. A. Hernando Morata
    • Universidad de Santiago de Compostela
  • E. van Herwijnen
    • European Organization for Nuclear Research (CERN)
  • E. Hicks
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • K. Holubyev
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • P. Hopchev
    • LAPP, Université de SavoieCNRS/IN2P3
  • W. Hulsbergen
    • Nikhef National Institute for Subatomic Physics
  • P. Hunt
    • Department of PhysicsUniversity of Oxford
  • T. Huse
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • R. S. Huston
    • School of PhysicsUniversity College Dublin
  • D. Hutchcroft
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • D. Hynds
    • School of Physics and AstronomyUniversity of Glasgow
  • V. Iakovenko
    • Institute for Nuclear Research of the National Academy of Sciences (KINR)
  • P. Ilten
    • School of PhysicsUniversity College Dublin
  • J. Imong
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • R. Jacobsson
    • European Organization for Nuclear Research (CERN)
  • A. Jaeger
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Jahjah Hussein
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • E. Jans
    • Nikhef National Institute for Subatomic Physics
  • F. Jansen
    • Nikhef National Institute for Subatomic Physics
  • P. Jaton
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • B. Jean-Marie
    • LAL, Université Paris-SudCNRS/IN2P3
  • F. Jing
    • Center for High Energy PhysicsTsinghua University
  • M. John
    • Department of PhysicsUniversity of Oxford
  • D. Johnson
    • Department of PhysicsUniversity of Oxford
  • C. R. Jones
    • Cavendish LaboratoryUniversity of Cambridge
  • B. Jost
    • European Organization for Nuclear Research (CERN)
  • M. Kaballo
    • Fakultät PhysikTechnische Universität Dortmund
  • S. Kandybei
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • M. Karacson
    • European Organization for Nuclear Research (CERN)
  • T. M. Karbach
    • Fakultät PhysikTechnische Universität Dortmund
  • J. Keaveney
    • School of PhysicsUniversity College Dublin
  • I. R. Kenyon
    • University of Birmingham
  • U. Kerzel
    • European Organization for Nuclear Research (CERN)
  • T. Ketel
    • Nikhef National Institute for Subatomic Physics and Vrije Universiteit
  • A. Keune
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • B. Khanji
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • Y. M. Kim
    • School of Physics and AstronomyUniversity of Edinburgh
  • M. Knecht
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • R. F. Koopman
    • Nikhef National Institute for Subatomic Physics and Vrije Universiteit
  • P. Koppenburg
    • Nikhef National Institute for Subatomic Physics
  • M. Korolev
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
  • A. Kozlinskiy
    • Nikhef National Institute for Subatomic Physics
  • L. Kravchuk
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
  • K. Kreplin
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Kreps
    • Department of PhysicsUniversity of Warwick
  • G. Krocker
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • P. Krokovny
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • F. Kruse
    • Fakultät PhysikTechnische Universität Dortmund
  • K. Kruzelecki
    • European Organization for Nuclear Research (CERN)
  • M. Kucharczyk
    • Sezione INFN di Milano Bicocca
    • Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
    • European Organization for Nuclear Research (CERN)
  • T. Kvaratskheliya
    • Institute of Theoretical and Experimental Physics (ITEP)
    • European Organization for Nuclear Research (CERN)
  • V. N. La Thi
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • D. Lacarrere
    • European Organization for Nuclear Research (CERN)
  • G. Lafferty
    • School of Physics and AstronomyUniversity of Manchester
  • A. Lai
    • Sezione INFN di Cagliari
  • D. Lambert
    • School of Physics and AstronomyUniversity of Edinburgh
  • R. W. Lambert
    • Nikhef National Institute for Subatomic Physics and Vrije Universiteit
  • E. Lanciotti
    • European Organization for Nuclear Research (CERN)
  • G. Lanfranchi
    • Laboratori Nazionali dell’INFN di Frascati
  • C. Langenbruch
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • T. Latham
    • Department of PhysicsUniversity of Warwick
  • C. Lazzeroni
    • University of Birmingham
  • R. Le Gac
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • J. van Leerdam
    • Nikhef National Institute for Subatomic Physics
  • J.-P. Lees
    • LAPP, Université de SavoieCNRS/IN2P3
  • R. Lefèvre
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • A. Leflat
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
    • European Organization for Nuclear Research (CERN)
  • J. Lefrançois
    • LAL, Université Paris-SudCNRS/IN2P3
  • O. Leroy
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • T. Lesiak
    • Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
  • L. Li
    • Center for High Energy PhysicsTsinghua University
  • L. Li Gioi
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • M. Lieng
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Liles
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • R. Lindner
    • European Organization for Nuclear Research (CERN)
  • C. Linn
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • B. Liu
    • Center for High Energy PhysicsTsinghua University
  • G. Liu
    • European Organization for Nuclear Research (CERN)
  • J. von Loeben
    • Sezione INFN di Milano Bicocca
  • J. H. Lopes
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • E. Lopez Asamar
    • Universitat de Barcelona
  • N. Lopez-March
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • H. Lu
    • Center for High Energy PhysicsTsinghua University
  • J. Luisier
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • A. Mac Raighne
    • School of Physics and AstronomyUniversity of Glasgow
  • F. Machefert
    • LAL, Université Paris-SudCNRS/IN2P3
  • I. V. Machikhiliyan
    • Institute of Theoretical and Experimental Physics (ITEP)
    • LAPP, Université de SavoieCNRS/IN2P3
  • F. Maciuc
    • Max-Planck-Institut für Kernphysik (MPIK)
  • O. Maev
    • Petersburg Nuclear Physics Institute (PNPI)
    • European Organization for Nuclear Research (CERN)
  • J. Magnin
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • S. Malde
    • Department of PhysicsUniversity of Oxford
  • R. M. D. Mamunur
    • European Organization for Nuclear Research (CERN)
  • G. Manca
    • Sezione INFN di Cagliari
  • G. Mancinelli
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • N. Mangiafave
    • Cavendish LaboratoryUniversity of Cambridge
  • U. Marconi
    • Sezione INFN di Bologna
  • R. Märki
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • J. Marks
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • G. Martellotti
    • Sezione INFN di Roma La Sapienza
  • A. Martens
    • LPNHE, Université Pierre et Marie Curie, Université Paris DiderotCNRS/IN2P3
  • L. Martin
    • Department of PhysicsUniversity of Oxford
  • A. Martín Sánchez
    • LAL, Université Paris-SudCNRS/IN2P3
  • D. Martinez Santos
    • European Organization for Nuclear Research (CERN)
  • A. Massafferri
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • Z. Mathe
    • School of PhysicsUniversity College Dublin
  • C. Matteuzzi
    • Sezione INFN di Milano Bicocca
  • M. Matveev
    • Petersburg Nuclear Physics Institute (PNPI)
  • E. Maurice
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • B. Maynard
    • Syracuse University
  • A. Mazurov
    • Sezione INFN di Ferrara
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
    • European Organization for Nuclear Research (CERN)
  • G. McGregor
    • School of Physics and AstronomyUniversity of Manchester
  • R. McNulty
    • School of PhysicsUniversity College Dublin
  • M. Meissner
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Merk
    • Nikhef National Institute for Subatomic Physics
  • J. Merkel
    • Fakultät PhysikTechnische Universität Dortmund
  • R. Messi
    • Sezione INFN di Roma Tor Vergata
  • S. Miglioranzi
    • European Organization for Nuclear Research (CERN)
  • D. A. Milanes
    • Sezione INFN di Bari
  • M.-N. Minard
    • LAPP, Université de SavoieCNRS/IN2P3
  • J. Molina Rodriguez
    • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • S. Monteil
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • D. Moran
    • School of PhysicsUniversity College Dublin
  • P. Morawski
    • Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
  • R. Mountain
    • Syracuse University
  • I. Mous
    • Nikhef National Institute for Subatomic Physics
  • F. Muheim
    • School of Physics and AstronomyUniversity of Edinburgh
  • K. Müller
    • Physik-InstitutUniversität Zürich
  • R. Muresan
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • B. Muryn
    • AGH University of Science and Technology
  • B. Muster
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. Musy
    • Universitat de Barcelona
  • J. Mylroie-Smith
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • P. Naik
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • T. Nakada
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • R. Nandakumar
    • STFC Rutherford Appleton Laboratory
  • I. Nasteva
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • M. Nedos
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Needham
    • School of Physics and AstronomyUniversity of Edinburgh
  • N. Neufeld
    • European Organization for Nuclear Research (CERN)
  • A. D. Nguyen
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • C. Nguyen-Mau
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. Nicol
    • LAL, Université Paris-SudCNRS/IN2P3
  • V. Niess
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • N. Nikitin
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
  • A. Nomerotski
    • European Organization for Nuclear Research (CERN)
    • Department of PhysicsUniversity of Oxford
  • A. Novoselov
    • Institute for High Energy Physics (IHEP)
  • A. Oblakowska-Mucha
    • AGH University of Science and Technology
  • V. Obraztsov
    • Institute for High Energy Physics (IHEP)
  • S. Oggero
    • Nikhef National Institute for Subatomic Physics
  • S. Ogilvy
    • School of Physics and AstronomyUniversity of Glasgow
  • O. Okhrimenko
    • Institute for Nuclear Research of the National Academy of Sciences (KINR)
  • R. Oldeman
    • Sezione INFN di Cagliari
    • European Organization for Nuclear Research (CERN)
  • M. Orlandea
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • J. M. Otalora Goicochea
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • P. Owen
    • Imperial College London
  • K. Pal
    • Syracuse University
  • J. Palacios
    • Physik-InstitutUniversität Zürich
  • A. Palano
    • Sezione INFN di Bari
  • M. Palutan
    • Laboratori Nazionali dell’INFN di Frascati
  • J. Panman
    • European Organization for Nuclear Research (CERN)
  • A. Papanestis
    • STFC Rutherford Appleton Laboratory
  • M. Pappagallo
    • School of Physics and AstronomyUniversity of Glasgow
  • C. Parkes
    • School of Physics and AstronomyUniversity of Manchester
  • C. J. Parkinson
    • Imperial College London
  • G. Passaleva
    • Sezione INFN di Firenze
  • G. D. Patel
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • M. Patel
    • Imperial College London
  • S. K. Paterson
    • Imperial College London
  • G. N. Patrick
    • STFC Rutherford Appleton Laboratory
  • C. Patrignani
    • Sezione INFN di Genova
  • C. Pavel-Nicorescu
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • A. Pazos Alvarez
    • Universidad de Santiago de Compostela
  • A. Pellegrino
    • Nikhef National Institute for Subatomic Physics
  • G. Penso
    • Sezione INFN di Roma La Sapienza
  • M. Pepe Altarelli
    • European Organization for Nuclear Research (CERN)
  • S. Perazzini
    • Sezione INFN di Bologna
  • D. L. Perego
    • Sezione INFN di Milano Bicocca
  • E. Perez Trigo
    • Universidad de Santiago de Compostela
  • A. Pérez-Calero Yzquierdo
    • Universitat de Barcelona
  • P. Perret
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • M. Perrin-Terrin
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • G. Pessina
    • Sezione INFN di Milano Bicocca
  • A. Petrella
    • Sezione INFN di Ferrara
    • European Organization for Nuclear Research (CERN)
  • A. Petrolini
    • Sezione INFN di Genova
  • A. Phan
    • Syracuse University
  • E. Picatoste Olloqui
    • Universitat de Barcelona
  • B. Pie Valls
    • Universitat de Barcelona
  • B. Pietrzyk
    • LAPP, Université de SavoieCNRS/IN2P3
  • T. Pilař
    • Department of PhysicsUniversity of Warwick
  • D. Pinci
    • Sezione INFN di Roma La Sapienza
  • R. Plackett
    • School of Physics and AstronomyUniversity of Glasgow
  • S. Playfer
    • School of Physics and AstronomyUniversity of Edinburgh
  • M. Plo Casasus
    • Universidad de Santiago de Compostela
  • G. Polok
    • Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
  • A. Poluektov
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
    • Department of PhysicsUniversity of Warwick
  • E. Polycarpo
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • D. Popov
    • Max-Planck-Institut für Kernphysik (MPIK)
  • B. Popovici
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • C. Potterat
    • Universitat de Barcelona
  • A. Powell
    • Department of PhysicsUniversity of Oxford
  • J. Prisciandaro
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • V. Pugatch
    • Institute for Nuclear Research of the National Academy of Sciences (KINR)
  • A. Puig Navarro
    • Universitat de Barcelona
  • W. Qian
    • Syracuse University
  • J. H. Rademacker
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • B. Rakotomiaramanana
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. S. Rangel
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • I. Raniuk
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • G. Raven
    • Nikhef National Institute for Subatomic Physics and Vrije Universiteit
  • S. Redford
    • Department of PhysicsUniversity of Oxford
  • M. M. Reid
    • Department of PhysicsUniversity of Warwick
  • A. C. dos Reis
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • S. Ricciardi
    • STFC Rutherford Appleton Laboratory
  • A. Richards
    • Imperial College London
  • K. Rinnert
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • D. A. Roa Romero
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • P. Robbe
    • LAL, Université Paris-SudCNRS/IN2P3
  • E. Rodrigues
    • School of Physics and AstronomyUniversity of Glasgow
    • School of Physics and AstronomyUniversity of Manchester
  • F. Rodrigues
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • P. Rodriguez Perez
    • Universidad de Santiago de Compostela
  • G. J. Rogers
    • Cavendish LaboratoryUniversity of Cambridge
  • S. Roiser
    • European Organization for Nuclear Research (CERN)
  • V. Romanovsky
    • Institute for High Energy Physics (IHEP)
  • M. Rosello
    • Universitat de Barcelona
  • J. Rouvinet
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • T. Ruf
    • European Organization for Nuclear Research (CERN)
  • H. Ruiz
    • Universitat de Barcelona
  • G. Sabatino
    • Sezione INFN di Roma Tor Vergata
  • J. J. Saborido Silva
    • Universidad de Santiago de Compostela
  • N. Sagidova
    • Petersburg Nuclear Physics Institute (PNPI)
  • P. Sail
    • School of Physics and AstronomyUniversity of Glasgow
  • B. Saitta
    • Sezione INFN di Cagliari
  • C. Salzmann
    • Physik-InstitutUniversität Zürich
  • M. Sannino
    • Sezione INFN di Genova
  • R. Santacesaria
    • Sezione INFN di Roma La Sapienza
  • C. Santamarina Rios
    • Universidad de Santiago de Compostela
  • R. Santinelli
    • European Organization for Nuclear Research (CERN)
  • E. Santovetti
    • Sezione INFN di Roma Tor Vergata
  • M. Sapunov
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • A. Sarti
    • Laboratori Nazionali dell’INFN di Frascati
  • C. Satriano
    • Sezione INFN di Roma La Sapienza
  • A. Satta
    • Sezione INFN di Roma Tor Vergata
  • M. Savrie
    • Sezione INFN di Ferrara
  • D. Savrina
    • Institute of Theoretical and Experimental Physics (ITEP)
  • P. Schaack
    • Imperial College London
  • M. Schiller
    • Nikhef National Institute for Subatomic Physics and Vrije Universiteit
  • S. Schleich
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Schlupp
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Schmelling
    • Max-Planck-Institut für Kernphysik (MPIK)
  • B. Schmidt
    • European Organization for Nuclear Research (CERN)
  • O. Schneider
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • A. Schopper
    • European Organization for Nuclear Research (CERN)
  • M.-H. Schune
    • LAL, Université Paris-SudCNRS/IN2P3
  • R. Schwemmer
    • European Organization for Nuclear Research (CERN)
  • B. Sciascia
    • Laboratori Nazionali dell’INFN di Frascati
  • A. Sciubba
    • Laboratori Nazionali dell’INFN di Frascati
  • M. Seco
    • Universidad de Santiago de Compostela
  • A. Semennikov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • K. Senderowska
    • AGH University of Science and Technology
  • I. Sepp
    • Imperial College London
  • N. Serra
    • Physik-InstitutUniversität Zürich
  • J. Serrano
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • P. Seyfert
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Shapkin
    • Institute for High Energy Physics (IHEP)
  • I. Shapoval
    • European Organization for Nuclear Research (CERN)
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • P. Shatalov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • Y. Shcheglov
    • Petersburg Nuclear Physics Institute (PNPI)
  • T. Shears
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • L. Shekhtman
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • O. Shevchenko
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • V. Shevchenko
    • Institute of Theoretical and Experimental Physics (ITEP)
  • A. Shires
    • Imperial College London
  • R. Silva Coutinho
    • Department of PhysicsUniversity of Warwick
  • T. Skwarnicki
    • Syracuse University
  • N. A. Smith
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • E. Smith
    • STFC Rutherford Appleton Laboratory
    • Department of PhysicsUniversity of Oxford
  • K. Sobczak
    • Clermont Université, Université Blaise PascalCNRS/IN2P3, LPC
  • F. J. P. Soler
    • School of Physics and AstronomyUniversity of Glasgow
  • A. Solomin
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • F. Soomro
    • Laboratori Nazionali dell’INFN di Frascati
    • European Organization for Nuclear Research (CERN)
  • B. Souza De Paula
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • B. Spaan
    • Fakultät PhysikTechnische Universität Dortmund
  • A. Sparkes
    • School of Physics and AstronomyUniversity of Edinburgh
  • P. Spradlin
    • School of Physics and AstronomyUniversity of Glasgow
  • F. Stagni
    • European Organization for Nuclear Research (CERN)
  • S. Stahl
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • O. Steinkamp
    • Physik-InstitutUniversität Zürich
  • S. Stoica
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • S. Stone
    • European Organization for Nuclear Research (CERN)
    • Syracuse University
  • B. Storaci
    • Nikhef National Institute for Subatomic Physics
  • M. Straticiuc
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • U. Straumann
    • Physik-InstitutUniversität Zürich
  • V. K. Subbiah
    • European Organization for Nuclear Research (CERN)
  • S. Swientek
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Szczekowski
    • Soltan Institute for Nuclear Studies
  • P. Szczypka
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • T. Szumlak
    • AGH University of Science and Technology
  • S. T’Jampens
    • LAPP, Université de SavoieCNRS/IN2P3
  • E. Teodorescu
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • F. Teubert
    • European Organization for Nuclear Research (CERN)
  • C. Thomas
    • Department of PhysicsUniversity of Oxford
  • E. Thomas
    • European Organization for Nuclear Research (CERN)
  • J. van Tilburg
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • V. Tisserand
    • LAPP, Université de SavoieCNRS/IN2P3
  • M. Tobin
    • Physik-InstitutUniversität Zürich
  • S. Topp-Joergensen
    • Department of PhysicsUniversity of Oxford
  • N. Torr
    • Department of PhysicsUniversity of Oxford
  • E. Tournefier
    • LAPP, Université de SavoieCNRS/IN2P3
    • Imperial College London
  • S. Tourneur
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. T. Tran
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • A. Tsaregorodtsev
    • CPPM, Aix-Marseille UniversitéCNRS/IN2P3
  • N. Tuning
    • Nikhef National Institute for Subatomic Physics
  • M. Ubeda Garcia
    • European Organization for Nuclear Research (CERN)
  • A. Ukleja
    • Soltan Institute for Nuclear Studies
  • P. Urquijo
    • Syracuse University
  • U. Uwer
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • V. Vagnoni
    • Sezione INFN di Bologna
  • G. Valenti
    • Sezione INFN di Bologna
  • R. Vazquez Gomez
    • Universitat de Barcelona
  • P. Vazquez Regueiro
    • Universidad de Santiago de Compostela
  • S. Vecchi
    • Sezione INFN di Ferrara
  • J. J. Velthuis
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • M. Veltri
    • Sezione INFN di Firenze
  • B. Viaud
    • LAL, Université Paris-SudCNRS/IN2P3
  • I. Videau
    • LAL, Université Paris-SudCNRS/IN2P3
  • D. Vieira
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • X. Vilasis-Cardona
    • Universitat de Barcelona
  • J. Visniakov
    • Universidad de Santiago de Compostela
  • A. Vollhardt
    • Physik-InstitutUniversität Zürich
  • D. Volyanskyy
    • Max-Planck-Institut für Kernphysik (MPIK)
  • D. Voong
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • A. Vorobyev
    • Petersburg Nuclear Physics Institute (PNPI)
  • H. Voss
    • Max-Planck-Institut für Kernphysik (MPIK)
  • S. Wandernoth
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • J. Wang
    • Syracuse University
  • D. R. Ward
    • Cavendish LaboratoryUniversity of Cambridge
  • N. K. Watson
    • University of Birmingham
  • A. D. Webber
    • School of Physics and AstronomyUniversity of Manchester
  • D. Websdale
    • Imperial College London
  • M. Whitehead
    • Department of PhysicsUniversity of Warwick
  • D. Wiedner
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • L. Wiggers
    • Nikhef National Institute for Subatomic Physics
  • G. Wilkinson
    • Department of PhysicsUniversity of Oxford
  • M. P. Williams
    • Department of PhysicsUniversity of Warwick
    • STFC Rutherford Appleton Laboratory
  • M. Williams
    • Imperial College London
  • F. F. Wilson
    • STFC Rutherford Appleton Laboratory
  • J. Wishahi
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Witek
    • Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
  • W. Witzeling
    • European Organization for Nuclear Research (CERN)
  • S. A. Wotton
    • Cavendish LaboratoryUniversity of Cambridge
  • K. Wyllie
    • European Organization for Nuclear Research (CERN)
  • Y. Xie
    • School of Physics and AstronomyUniversity of Edinburgh
  • F. Xing
    • Department of PhysicsUniversity of Oxford
  • Z. Xing
    • Syracuse University
  • Z. Yang
    • Center for High Energy PhysicsTsinghua University
  • R. Young
    • School of Physics and AstronomyUniversity of Edinburgh
  • O. Yushchenko
    • Institute for High Energy Physics (IHEP)
  • M. Zangoli
    • Sezione INFN di Bologna
  • M. Zavertyaev
    • Max-Planck-Institut für Kernphysik (MPIK)
  • F. Zhang
    • Center for High Energy PhysicsTsinghua University
  • L. Zhang
    • Syracuse University
  • W. C. Zhang
    • School of PhysicsUniversity College Dublin
  • Y. Zhang
    • Center for High Energy PhysicsTsinghua University
  • A. Zhelezov
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • L. Zhong
    • Center for High Energy PhysicsTsinghua University
  • A. Zvyagin
    • European Organization for Nuclear Research (CERN)
Open AccessRegular Article - Experimental Physics

DOI: 10.1140/epjc/s10052-012-2025-y

Cite this article as:
The LHCb Collaboration, Aaij, R., Abellan Beteta, C. et al. Eur. Phys. J. C (2012) 72: 2025. doi:10.1140/epjc/s10052-012-2025-y

Abstract

The production of ϒ(1S), ϒ(2S) and ϒ(3S) mesons in proton-proton collisions at the centre-of-mass energy of \(\sqrt{s}=7~\mbox{TeV}\) is studied with the LHCb detector. The analysis is based on a data sample of 25 pb−1 collected at the Large Hadron Collider. The ϒ mesons are reconstructed in the decay mode ϒμ+μ and the signal yields are extracted from a fit to the μ+μ invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the ϒ transverse momentum pT and rapidity y, over the range pT<15 GeV/c and 2.0<y<4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Equa_HTML.gif
where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three ϒ states.

1 Introduction

The measurement of heavy quark production in hadron collisions probes the dynamics of the colliding partons. The study of heavy quark–antiquark resonances, such as the \(b\overline{b}\) bound states ϒ(1S), ϒ(2S) and ϒ(3S) (indicated generically as ϒ in the following) is of interest as these mesons have large production cross-sections and can be produced in different spin configurations. In addition, the thorough understanding of these states is the first step towards the study of recently discovered new states in the \(b\bar{b}\) system [14]. Although ϒ production was studied by several experiments in the past, the underlying production mechanism is still not well understood. Several models exist but fail to reproduce both the cross-section and the polarisation measurements at the Tevatron [57]. Among these are the Colour Singlet Model (CSM) [810], recently improved by adding higher order contributions (NLO CSM), the standard truncation of the nonrelativistic QCD expansion (NRQCD) [11], which includes contributions from the Colour Octet Mechanism [12, 13], and the Colour Evaporation Model (CEM) [14]. Although the disagreement of the theory with the data is less pronounced for bottomonium than for charmonium, the measurement of ϒ production is important as the theoretical calculations are more robust due to the heavier bottom quark.

There are two major sources of ϒ production in pp collisions: direct production and feed-down from the decay of heavier prompt bottomonium states, like χb, or higher-mass ϒ states. This study presents measurements of the individual inclusive production cross-sections of the three ϒ mesons decaying into a pair of muons. The measurements are performed in 7 TeV centre-of-mass pp collisions as a function of the ϒ transverse momentum (\(p_{\mathrm{T}}<15~\mathrm{GeV/}c\)) and rapidity (2<y<4.5), in 15 bins of pT and five bins of y. This analysis is complementary to those recently presented by the ATLAS collaboration, who measured the ϒ(1S) cross section for |y|<2.4 [15], and the CMS collaboration, who measured the ϒ(1S),ϒ(2S) and ϒ(3S) cross sections in the rapidity region |y|<2.0 [16].

2 The LHCb detector and data

The results presented here are based on a dataset of 25.0±0.9 pb−1 collected at the Large Hadron Collider (LHC) in 2010 with the LHCb detector at a centre-of-mass energy of 7 TeV.

The LHCb detector [17] is a single-arm forward spectrometer covering the pseudo-rapidity range 2<η<5, designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift-tubes placed downstream. The combined tracking system has a momentum resolution Δp/p that varies from 0.4 % at \(5~\mathrm{GeV/}c\) to 0.6 % at \(100~\mathrm{GeV/}c\), and an impact parameter resolution of 20 μm for tracks with high transverse momentum. Charged hadrons are identified using two ring-imaging Cherenkov detectors. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and pre-shower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a muon system composed of alternating layers of iron and multiwire proportional chambers. The trigger consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage which applies a full event reconstruction. This analysis uses events triggered by one or two muons. At the hardware level one or two muon candidates are required with pT larger than \(1.4~\mathrm{GeV/}c\) for one muon, and 0.56 and \(0.48~\mathrm{GeV/}c\) for two muons. At the software level, the combined dimuon mass is required to be greater than \(2.9~\mathrm{GeV/}c^{2}\), and both the tracks and the vertex have to be of good quality. To avoid the possibility that a few events with a high occupancy dominate the trigger processing time, a set of global event selection requirements based on hit multiplicities is applied.

The Monte Carlo samples used are based on the Pythia 6.4 generator [18], with a choice of parameters specifically configured for LHCb [19]. The EvtGen package [20] describes the decay of the ϒ resonances, and the Geant4 package [21] simulates the detector response. The prompt bottomonium production processes activated in Pythia are those from the leading-order colour-singlet and colour-octet mechanisms for the ϒ(1S), and colour-singlet only for the ϒ(2S) and the ϒ(3S). QED radiative corrections to the decay ϒμ+μ are generated with the Photos package [22].

3 Cross-section determination

The double differential cross-section for the inclusive ϒ production of the three different states is computed as
$$ \frac{\mathrm{d}^2\sigma^{iS}}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \times \mathcal{B}^{iS}= \frac{N^{iS}}{{\mathcal{L}}\times\varepsilon^{iS} \times\Delta y\times\Delta p_{\mathrm{T}}},\quad i=1,2,3; $$
(1)
where σiS is the inclusive cross section σ(ppϒ(iS)X), \(\mathcal{B}^{iS}\) is the dimuon branching fraction \(\mathcal{B}(\varUpsilon(iS)\rightarrow\mu ^{+}\mu^{-})\), NiS is the number of observed ϒ(iS)→μ+μ decays in a given bin of pT and y, εiS is the ϒ(iS)→μ+μ total detection efficiency including acceptance effects, \({\mathcal{L}}\) is the integrated luminosity and Δy=0.5 and ΔpT=1 GeV/c are the rapidity and pT bin sizes, respectively. In order to estimate NiS, a fit to the reconstructed invariant mass distribution is performed in each of the 15 pT×5 y bins. ϒ candidates are formed from pairs of oppositely charged muon tracks which traverse the full spectrometer and satisfy the trigger requirements. Each track must have \(p_{\mathrm{T}}>1~\mathrm{GeV/}c\), be identified as a muon and have a good quality of the track fit. The two muons are required to originate from a common vertex with a good χ2 probability. The three ϒ signal yields are determined from a fit to the reconstructed invariant mass m of the selected ϒ candidates in the interval \(8.9\mbox{--}10.9~\mathrm{GeV/}c^{2}\). The mass distribution is described by a sum of three Crystal Ball functions [23] for the ϒ(1S), ϒ(2S) and ϒ(3S) signals and an exponential function for the combinatorial background. The Crystal Ball function is defined as
$$ f_{\mathrm{CB}} = \left\{ \begin{array}{l@{\quad }l} \frac{(\frac{n}{|a|})^n e^{-\frac{1}{2}a^2}}{(\frac{n}{|a|}-|a|-\frac{m-M}{\sigma})^n} & {\mathrm{if}}\ \frac{m-M}{\sigma} < -|a|\\[6pt] \exp\big( -\frac{1}{2}\big(\frac{m-M}{\sigma}\big)^2\big) & \mbox{otherwise}, \end{array} \right. $$
(2)
with fCB=fCB(m;M,σ,a,n), where M and σ are the mean and width of the gaussian. The parameters a and n describing the radiative tail of the ϒ mass distribution are fixed to describe a tail dominated by QED photon emission, as confirmed by simulation. The distribution in Fig. 1 shows the results of the fit performed in the full range of pT and y. The signal yields obtained from the fit are ϒ(1S)=26 410±212, ϒ(2S)=6726±142 and ϒ(3S)=3260±112 events. The mass resolution of the ϒ(1S) peak is \(\sigma=53.9\pm0.5~\mathrm{MeV/}c^{2}\). The resolutions of the ϒ(2S) and ϒ(3S) peaks are fixed to the resolution of the ϒ(1S), scaled by the ratio of the masses, as expected from resolution effects. The masses are allowed to vary in the fit and are measured to be \(M(\varUpsilon(1S)) = 9448.3\pm0.5~\mathrm{MeV/}c^{2}\), \(M(\varUpsilon(2S)) = 10\,010.4\pm1.4~\mathrm{MeV/}c^{2}\) and \(M(\varUpsilon(3S))=10\,338.7\pm2.6~\mathrm{MeV/}c^{2}\), where the quoted uncertainties are statistical only. The fit is repeated independently for each of the bins in pT and y. When fitting the individual bins, due to the reduced dataset, the masses and widths of the three ϒ states in the fit are fixed to the values obtained when fitting the full range. Bins with fewer than 36 entries are excluded from the analysis. The total efficiency ε entering the cross-section expression of (1) is the product of the geometric acceptance, the reconstruction and selection efficiency and the trigger efficiency. All efficiency terms have been evaluated using Monte Carlo simulations in each (pT,y) bin separately, with the exception of that related to the global event selection which has been determined from data. In the simulation the ϒ meson is produced in an unpolarised state. The absolute luminosity scale was measured at specific periods during the 2010 data taking using both van der Meer scans and a beam-gas imaging method [24, 25]. The uncertainty on the integrated luminosity for the analysed sample due to this method is estimated to be 3.5 % [25]. The knowledge of the absolute luminosity scale is used to calibrate the number of tracks in the vertex detector, which is found to be stable throughout the data-taking period and can therefore be used to monitor the instantaneous luminosity of the entire data sample. The integrated luminosity of the data sample used in this analysis is determined to be 25.0 pb−1.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Fig1_HTML.gif
Fig. 1

Invariant mass distribution of the selected ϒμ+μ candidates in the range \(p_{\mathrm{T}}<15~\mathrm{GeV/}c\) and 2.0<y<4.5. The three peaks correspond to the ϒ(1S), ϒ(2S) and ϒ(3S) signals (from left to right). The superimposed curves are the result of the fit as described in the text

4 Systematic uncertainties

Extensive studies on dimuon decays [15, 16, 26] have shown that the total efficiency depends strongly on the initial polarisation state of the vector meson. In this analysis, the influence of the unknown polarisation is studied in the helicity frame [27] using Monte Carlo simulation. The angular distribution of the muons from the ϒ, ignoring the azimuthal part, is
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Equ3_HTML.gif
(3)
where θ is the angle between the direction of the μ+ momentum in the ϒ centre-of-mass frame and the direction of the ϒ momentum in the colliding proton centre-of-mass frame. The values α=+1,−1,0 correspond to fully transverse, fully longitudinal, and no polarisation respectively. Figure 2 shows the ϒ(1S) total efficiency for these three scenarios, and indicates that the polarisation significantly affects the efficiencies and that the effect depends on pT and y. A similar behaviour is observed for the ϒ(2S) and ϒ(3S) efficiencies. Following this observation, in each (pT,y) bin the maximal difference between the polarised scenarios (α=±1) and the unpolarised scenario (α=0) is taken as a systematic uncertainty on the efficiency. This results in an uncertainty of up to 17 % on the integrated cross-sections and of up to 40 % in the individual bins. Several other sources of possible systematic effects were studied. They are summarised in Table 1.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Fig2_HTML.gif
Fig. 2

Total efficiency ε of the ϒ(1S) as a function of (a) the ϒ(1S) transverse momentum and (b) rapidity, estimated using the Monte Carlo simulation, for three different ϒ(1S) polarisation scenarios, indicated by the parameter α described in the text

Table 1

Summary of the relative systematic uncertainties on the cross-section measurements. Ranges indicate variations depending on the (pT,y) bin and the ϒ state. All uncertainties are fully correlated among the bins

Source

Uncertainty (%)

Unknown ϒ polarisation

0.3–41.0

Trigger

3.0

Track reconstruction

2.4

Track quality requirement

0.5

Vertexing requirement

1.0

Muon identification

1.1

Global event selection requirements

0.6

pT binning effect

1.0

Fit function

1.1–2.1

Luminosity

3.5

The trigger efficiency is determined on data using an unbiased sample of events that would trigger if the ϒ candidate were removed. The efficiency obtained with this method is compared with the efficiency determined in the simulation. The difference of 3.0 % is assigned as a systematic uncertainty.

The uncertainty on the muon track reconstruction efficiency has been estimated using a data driven tag-and-probe approach based on partially reconstructed J/ψμ+μ decays [28], and found to be 2.4 % per muon pair. Additional uncertainties are assigned, which account for the different behaviour in data and simulation of the track and vertex quality requirements. The muon identification efficiency is measured using a tag-and-probe approach, which gives an uncertainty on the efficiency of 1.1 % [26].

The measurement of the global event selection efficiency is taken as an additional uncertainty associated with the trigger. An uncertainty of 1.0 % is considered to account for the difference in the pT spectra in data and Monte Carlo simulation for the three ϒ states, which might have an effect on the correct bin assignment (“binning effect”).

The influence of the choice of the fit function describing the shape of the invariant mass distribution includes two components. The uncertainty on the shape of the background distribution is estimated using a different fit model (1.0–1.5 %). The systematic associated with fixing the parameters of the Crystal Ball function is estimated by varying the central values within the parameters uncertainties, obtained when leaving them free to vary in the fit (0.5–1.4 %).

5 Results

The double differential cross-sections as a function of pT and y are shown in Fig. 3 and Tables 2, 3, 4. The integrated cross-sections times branching fractions in the range \(p_{\mathrm{T}}<15~\mathrm{GeV/}c\) and 2.0<y<4.5 are measured to be
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Equb_HTML.gif
where the first uncertainties are statistical, the second systematic and the third are due to the unknown polarisation of the three ϒ states. The integrated ϒ(1S) cross-section is about a factor one hundred smaller than the integrated J/ψ cross-section in the identical region of pT and y [26], and a factor three smaller than the integrated ϒ(1S) cross-section in the central region, as measured by CMS [16] and ATLAS [15].
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Fig3_HTML.gif
Fig. 3

Double differential ϒμ+μ cross-sections times dimuon branching fractions as a function of pT in bins of rapidity for (a) the ϒ(1S), (b) the ϒ(2S) and (c) the ϒ(3S). The error bars correspond to the total uncertainty for each bin

Table 2

Double differential cross-section ϒ(1S)→μ+μ as a function of rapidity and transverse momentum, in \(\mathrm{pb}/(\mathrm{GeV/}c)\). The first uncertainty is statistical, the second is systematic, and the third is due to the unknown polarisation of the ϒ(1S)

pT (\(\mathrm{GeV/}c\))

2.0<y<2.5

2.5<y<3.0

3.0<y<3.5

3.5<y<4.0

4.0<y<4.5

0–1

\(53.1 \pm 4.0 \pm 2.5 {}_{- 17.3}^{+ 8.9}\)

\(62.6 \pm 3.0 \pm 2.9 {}_{- 11.5}^{+ 6.1}\)

\(48.0 \pm 2.4 \pm 2.2 {}_{-5.8}^{+ 3.1}\)

\(40.1 \pm 2.4 \pm 1.9 {}_{- 7.0}^{+ 3.9}\)

\(22.9 \pm 2.7 \pm 1.1 {}_{- 5.9}^{+ 3.4}\)

1–2

\(152.5 \pm 6.8 \pm 7.2 {}_{- 50.4}^{+ 25.7}\)

\(148.8 \pm 4.7 \pm 7.0 {}_{- 27.5}^{+ 14.6}\)

\(120.5 \pm 3.8 \pm 5.6 {}_{-14.0}^{+ 7.5}\)

\(93.3 \pm 3.7 \pm 4.3 {}_{- 14.8}^{+ 8.1}\)

\(64.5 \pm 4.5 \pm 3.0 {}_{- 15.0}^{+ 8.7}\)

2–3

\(211.0 \pm 8.0 \pm 10.0 {}_{- 67.2}^{+ 34.3}\)

\(185.3 \pm 5.2 \pm 8.7 {}_{- 34.4}^{+ 18.1}\)

\(150.0 \pm 4.3 \pm 7.0 {}_{-17.4}^{+ 9.2}\)

\(116.1 \pm 4.1 \pm 5.4 {}_{- 15.5}^{+ 8.4}\)

\(69.8 \pm 4.6 \pm 3.3 {}_{- 14.6}^{+ 8.3}\)

3–4

\(184.3 \pm 7.3 \pm 8.8 {}_{- 56.3}^{+ 28.8}\)

\(167.7 \pm 4.9 \pm 7.9 {}_{- 29.3}^{+ 15.6}\)

\(141.9 \pm 4.2 \pm 6.6 {}_{- 15.0}^{+ 8.0}\)

\(109.7 \pm 4.0 \pm 5.1 {}_{- 11.9}^{+ 6.3}\)

\(70.6\pm 4.6 \pm 3.3 {}_{- 12.2}^{+ 6.7}\)

4–5

\(187.3 \pm 7.3 \pm 8.9 {}_{- 54.8}^{+ 27.9}\)

\(158.4 \pm 4.8 \pm 7.4 {}_{- 26.4}^{+ 14.0}\)

\(120.9 \pm 3.9 \pm 5.7 {}_{- 11.3}^{+ 6.0}\)

\(84.6 \pm 3.5 \pm 4.0 {}_{- 7.0}^{+ 3.7}\)

\(50.4 \pm 3.8 \pm 2.4 {}_{- 7.0}^{+ 3.7}\)

5–6

\(138.0 \pm 6.2 \pm 6.6 {}_{- 38.3}^{+ 19.4}\)

\(134.5 \pm 4.4 \pm 6.3 {}_{- 20.8}^{+ 11.0}\)

\(94.2 \pm 3.5 \pm 4.4 {}_{- 7.3}^{+ 3.8}\)

\(70.6 \pm 3.2 \pm 3.3 {}_{- 4.0}^{+ 2.1}\)

\(45.3 \pm 3.6 \pm 2.1 {}_{- 4.9}^{+ 2.5}\)

6–7

\(105.3 \pm 5.3 \pm 5.0 {}_{- 27.6}^{+ 14.0}\)

\(95.2 \pm 3.7 \pm 4.5 {}_{- 13.7}^{+ 7.2}\)

\(73.5 \pm 3.0 \pm 3.5 {}_{- 4.6}^{+ 2.4}\)

\(57.0 \pm 2.9 \pm 2.7 {}_{- 1.9}^{+ 1.0}\)

\(29.5 \pm 2.8 \pm 1.4 {}_{- 2.5}^{+ 1.2}\)

7–8

\(78.3 \pm 4.5 \pm 3.7 {}_{- 19.4}^{+ 9.8}\)

\(72.9 \pm 3.2 \pm 3.4 {}_{- 9.6}^{+ 5.0}\)

\(60.2 \pm 2.7 \pm 2.8 {}_{- 3.0}^{+ 1.6}\)

\(38.3 \pm 2.3 \pm 1.8 {}_{- 0.8}^{+ 0.4}\)

\(21.6 \pm 2.4 \pm 1.0 {}_{- 1.5}^{+ 0.7}\)

8–9

\(63.5 \pm 4.0 \pm 3.0 {}_{- 14.8}^{+ 7.5}\)

\(57.0 \pm 2.8 \pm 2.7 {}_{- 6.8}^{+ 3.6}\)

\(43.3 \pm 2.3 \pm 2.0 {}_{- 1.9}^{+ 1.0}\)

\(24.7 \pm 1.9 \pm 1.2 {}_{- 0.6}^{+ 0.3}\)

\(13.6 \pm 1.9 \pm 0.6 {}_{- 0.8}^{+ 0.4}\)

9–10

\(50.1 \pm 3.5 \pm 2.4 {}_{- 10.8}^{+ 5.5}\)

\(43.2 \pm 2.4 \pm 2.0 {}_{- 5.0}^{+ 2.6}\)

\(29.8 \pm 1.9 \pm 1.4 {}_{- 1.0}^{+ 0.5}\)

\(19.4 \pm 1.6 \pm 0.9 {}_{- 0.6}^{+ 0.3}\)

\(6.1 \pm 1.2 \pm 0.3 {}_{- 0.3}^{+ 0.1}\)

10–11

\(35.4 \pm 2.9 \pm 1.7 {}_{- 7.3}^{+ 3.7}\)

\(28.2 \pm 1.9 \pm 1.3 {}_{- 3.0}^{+ 1.6}\)

\(23.9 \pm 1.7 \pm 1.1 {}_{- 0.8}^{+ 0.4}\)

\(12.3 \pm 1.3 \pm 0.6 {}_{- 0.5}^{+ 0.2}\)

\(6.8 \pm 1.3 \pm 0.3 {}_{- 0.4}^{+ 0.2}\)

11–12

\(29.3 \pm 2.6 \pm 1.4 {}_{- 5.8}^{+ 2.9}\)

\(19.4 \pm 1.6 \pm 0.9 {}_{- 1.9}^{+ 1.0}\)

\(14.7 \pm 1.3 \pm 0.7 {}_{- 0.6}^{+ 0.3}\)

\(6.7 \pm 0.9 \pm 0.3 {}_{- 0.2}^{+ 0.1}\)

\(4.3 \pm 1.0 \pm 0.2 {}_{- 0.3}^{+ 0.1}\)

12–13

\(20.3 \pm 2.1 \pm 1.0 {}_{- 3.7}^{+ 1.9}\)

\(13.7 \pm 1.3 \pm 0.6 {}_{- 1.3}^{+ 0.7}\)

\(10.3 \pm 1.1 \pm 0.5 {}_{- 0.3}^{+ 0.2}\)

\(6.7 \pm 0.9 \pm 0.3 {}_{- 0.2}^{+ 0.1}\)

\(2.8 \pm 0.8 \pm 0.1 {}_{- 0.2}^{+ 0.1}\)

13–14

\(10.4 \pm 1.5 \pm 0.5 {}_{- 1.9}^{+ 0.9}\)

\(11.6 \pm 1.2 \pm 0.5 {}_{- 1.1}^{+ 0.6}\)

\(8.6 \pm 1.0 \pm 0.4 {}_{- 0.2}^{+ 0.1}\)

\(5.0 \pm 0.8 \pm 0.2 {}_{- 0.2}^{+ 0.1}\)

\(0.8 \pm 0.4 \pm 0.0 {}_{- 0.1}^{+ 0.0}\)

14–15

\(11.2 \pm 1.5 \pm 0.5 {}_{- 2.0}^{+ 1.0}\)

\(8.9 \pm 1.0\pm 0.4 {}_{- 0.8}^{+ 0.4}\)

\(5.7 \pm 0.8 \pm 0.3 {}_{- 0.2}^{+ 0.1}\)

\(2.2 \pm 0.5 \pm 0.1 {}_{- 0.1}^{+ 0.0}\)

\(1.8 \pm 0.6 \pm 0.1 {}_{- 0.1}^{+ 0.1}\)

Table 3

Double differential cross-section ϒ(2S)→μ+μ as a function of rapidity and transverse momentum, in \(\mathrm{pb}/(\mathrm{GeV/}c)\). The first uncertainty is statistical, the second is systematic, and the third is due to the unknown polarisation of the ϒ(2S). Regions where the number of events was not sufficient to perform a measurement are indicated with a dash

pT\((\mathrm{GeV/}c)\)

2.0<y<2.5

2.5<y<3.0

3.0<y<3.5

3.5<y<4.0

4.0<y<4.5

0–1

\(8.2 \pm 1.7 \pm 0.4 {}_{- 3.1}^{+ 1.5}\)

\(15.8 \pm 1.6 \pm 0.7 {}_{- 2.8}^{+ 1.5}\)

\(7.8 \pm 1.0 \pm 0.4 {}_{- 0.8}^{+ 0.4}\)

\(8.6 \pm 1.2 \pm 0.4 {}_{- 1.5}^{+ 0.8}\)

1–2

\(25.8 \pm 2.9 \pm 1.2 {}_{- 9.2}^{+ 4.6}\)

\(31.2 \pm 2.2 \pm 1.5 {}_{- 5.6}^{+ 3.1}\)

\(23.0 \pm 1.7 \pm 1.1 {}_{- 2.9}^{+ 1.6}\)

\(18.3 \pm 1.6 \pm 0.9 {}_{- 2.8}^{+ 1.6}\)

\(10.4 \pm 1.8 \pm 0.5 {}_{- 2.3}^{+ 1.4}\)

2–3

\(39.3 \pm 3.6 \pm 1.9 {}_{- 12.9}^{+ 6.4}\)

\(45.7 \pm 2.6 \pm 2.1 {}_{- 8.2}^{+ 4.5}\)

\(24.4 \pm 1.8 \pm 1.1 {}_{- 2.9}^{+ 1.5}\)

\(26.3 \pm 2.0 \pm 1.2 {}_{- 3.4}^{+ 1.9}\)

\(14.9 \pm 2.2 \pm 0.7 {}_{- 3.2}^{+ 1.8}\)

3–4

\(55.8 \pm 4.2 \pm 2.6 {}_{- 17.4}^{+ 8.9}\)

\(42.1 \pm 2.5 \pm 2.0 {}_{- 7.3}^{+ 3.8}\)

\(37.8 \pm 2.2 \pm 1.8 {}_{- 4.3}^{+ 2.2}\)

\(20.8 \pm 1.8 \pm 1.0 {}_{- 2.4}^{+ 1.3}\)

\(11.9 \pm 1.9 \pm 0.6 {}_{- 2.1}^{+ 1.2}\)

4–5

\(54.5 \pm 4.1 \pm 2.6 {}_{- 15.9}^{+ 8.2}\)

\(39.2 \pm 2.4 \pm 1.8 {}_{- 6.7}^{+ 3.6}\)

\(22.6 \pm 1.7 \pm 1.1 {}_{- 2.0}^{+ 1.1}\)

\(18.3 \pm 1.6 \pm 0.9 {}_{- 1.6}^{+ 0.8}\)

\(12.2 \pm 1.9 \pm 0.6 {}_{- 1.8}^{+ 1.0}\)

5–6

\(39.1 \pm 3.4 \pm 1.9 {}_{- 10.3}^{+ 5.4}\)

\(44.8 \pm 2.6 \pm 2.1 {}_{- 7.6}^{+ 3.9}\)

\(32.8 \pm 2.1 \pm 1.5 {}_{- 2.8}^{+ 1.5}\)

\(18.1 \pm 1.6 \pm 0.8 {}_{- 1.2}^{+ 0.6}\)

\(7.8 \pm 1.5 \pm 0.4 {}_{- 0.9}^{+ 0.4}\)

6–7

\(28.8 \pm 2.9 \pm 1.4 {}_{- 8.3}^{+ 4.1}\)

\(25.1 \pm 1.9 \pm 1.2 {}_{- 3.9}^{+ 2.0}\)

\(22.3 \pm 1.7 \pm 1.0 {}_{- 1.4}^{+ 0.7}\)

\(11.6 \pm 1.3 \pm 0.5 {}_{- 0.5}^{+ 0.3}\)

\(5.2 \pm 1.2 \pm 0.2 {}_{- 0.5}^{+ 0.2}\)

7–8

\(21.9 \pm 2.4 \pm 1.0 {}_{- 5.4}^{+ 2.7}\)

\(23.4 \pm 1.9 \pm 1.1 {}_{- 3.5}^{+ 1.8}\)

\(16.3 \pm 1.4 \pm 0.8 {}_{- 0.9}^{+ 0.4}\)

\(5.8 \pm 0.9 \pm 0.3 {}_{- 0.1}^{+ 0.1}\)

\(5.4 \pm 1.2 \pm 0.3 {}_{- 0.4}^{+ 0.2}\)

8–9

\(22.9 \pm 2.4 \pm 1.1 {}_{- 4.8}^{+ 2.6}\)

\(17.1 \pm 1.5 \pm 0.8 {}_{- 2.0}^{+ 1.0}\)

\(12.4 \pm 1.2 \pm 0.6 {}_{- 0.6}^{+ 0.3}\)

\(7.6 \pm 1.0 \pm 0.4 {}_{- 0.2}^{+ 0.1}\)

\(4.3 \pm 1.0 \pm 0.2 {}_{- 0.3}^{+ 0.1}\)

9–10

\(12.8 \pm 1.8 \pm 0.6 {}_{- 2.9}^{+ 1.5}\)

\(12.9 \pm 1.3 \pm 0.6 {}_{- 1.2}^{+ 0.6}\)

\(9.8 \pm 1.1 \pm 0.5 {}_{- 0.5}^{+ 0.2}\)

\(7.0 \pm 1.0 \pm 0.3 {}_{- 0.2}^{+ 0.1}\)

\(1.2 \pm 0.5 \pm 0.1 {}_{- 0.1}^{+ 0.0}\)

10–11

\(10.3 \pm 1.6 \pm 0.5 {}_{- 2.1}^{+ 1.1}\)

\(9.5 \pm 1.1 \pm 0.4 {}_{- 0.9}^{+ 0.5}\)

\(4.3 \pm 0.7 \pm 0.2 {}_{- 0.2}^{+ 0.1}\)

\(6.4 \pm 0.9 \pm 0.3 {}_{- 0.2}^{+ 0.1}\)

\(2.6 \pm 0.8 \pm 0.1 {}_{- 0.2}^{+ 0.1}\)

11–12

\(8.6 \pm 1.5 \pm 0.4 {}_{- 2.4}^{+ 1.2}\)

\(10.0 \pm 1.1 \pm 0.5 {}_{- 0.9}^{+ 0.5}\)

\(4.4 \pm 0.7 \pm 0.2 {}_{- 0.1}^{+ 0.0}\)

\(1.2 \pm 0.4 \pm 0.1 {}_{- 0.0}^{+ 0.0}\)

12–13

\(5.8 \pm 1.2 \pm 0.3 {}_{- 0.9}^{+ 0.5}\)

\(5.8 \pm 0.9 \pm 0.3 {}_{- 0.5}^{+ 0.3}\)

\(4.1 \pm 0.7 \pm 0.2 {}_{- 0.1}^{+ 0.0}\)

13–14

\(4.4 \pm 1.0 \pm 0.2 {}_{- 0.7}^{+ 0.4}\)

\(1.7 \pm 0.5 \pm 0.1 {}_{- 0.1}^{+ 0.1}\)

\(2.6 \pm 0.5 \pm 0.1 {}_{- 0.1}^{+ 0.0}\)

14–15

\(1.9 \pm 0.6 \pm 0.1 {}_{- 0.3}^{+ 0.2}\)

\(4.9 \pm 0.8 \pm 0.2 {}_{- 0.5}^{+ 0.3}\)

\(3.9 \pm 0.7 \pm 0.2 {}_{- 0.3}^{+ 0.1}\)

Table 4

Double differential cross-section ϒ(3S)→μ+μ as a function of rapidity and transverse momentum, in \(\mathrm{pb}/(\mathrm{GeV/}c)\). The first uncertainty is statistical, the second is systematic, and the third is due to the unknown polarisation of the ϒ(3S). Regions where the number of events was not sufficient to perform a measurement are indicated with a dash

pT\((\mathrm{GeV/}c)\)

2.0<y<2.5

2.5<y<3.0

3.0<y<3.5

3.5<y<4.0

4.0<y<4.5

0–1

\(7.0 \pm 1.5 \pm 0.3 {}_{- 2.6}^{+ 1.3}\)

\(6.3 \pm 1.0 \pm 0.3 {}_{- 1.0}^{+ 0.6}\)

\(3.1 \pm 0.6 \pm 0.1 {}_{- 0.4}^{+ 0.2}\)

\(5.0 \pm 0.9 \pm 0.2 {}_{- 0.9}^{+ 0.5}\)

1–2

\(14.1 \pm 2.2 \pm 0.7 {}_{- 5.3}^{+ 2.6}\)

\(5.6 \pm 0.9 \pm 0.3 {}_{- 1.1}^{+ 0.6}\)

\(11.6 \pm 1.2 \pm 0.6 {}_{- 1.3}^{+ 0.7}\)

\(12.7 \pm 1.4 \pm 0.6 {}_{- 2.1}^{+ 1.2}\)

\(10.2 \pm 1.9 \pm 0.5 {}_{- 2.6}^{+ 1.4}\)

2–3

\(17.6 \pm 2.3 \pm 0.9 {}_{- 5.3}^{+ 2.7}\)

\(22.3 \pm 1.8 \pm 1.1 {}_{- 4.1}^{+ 2.1}\)

\(15.2 \pm 1.4 \pm 0.7 {}_{- 1.6}^{+ 0.8}\)

\(6.7 \pm 1.0 \pm 0.3 {}_{- 0.9}^{+ 0.5}\)

\(9.9 \pm 1.7 \pm 0.5 {}_{- 2.1}^{+ 1.2}\)

3–4

\(24.9 \pm 2.7 \pm 1.2 {}_{- 7.7}^{+ 4.0}\)

\(17.6 \pm 1.6 \pm 0.8 {}_{- 3.1}^{+ 1.6}\)

\(13.5 \pm 1.3 \pm 0.6 {}_{- 1.6}^{+ 0.8}\)

\(6.8 \pm 1.0 \pm 0.3 {}_{- 0.8}^{+ 0.4}\)

\(7.5 \pm 1.5 \pm 0.4 {}_{- 1.3}^{+ 0.7}\)

4–5

\(16.7 \pm 2.2 \pm 0.8 {}_{- 5.1}^{+ 2.6}\)

\(17.5 \pm 1.6 \pm 0.8 {}_{- 3.0}^{+ 1.6}\)

\(6.9 \pm 0.9 \pm 0.3 {}_{- 0.6}^{+ 0.3}\)

\(6.1 \pm 0.9 \pm 0.3 {}_{- 0.5}^{+ 0.3}\)

\(7.6 \pm 1.5 \pm 0.4 {}_{- 1.2}^{+ 0.6}\)

5–6

\(16.6 \pm 2.1 \pm 0.8 {}_{- 4.6}^{+ 2.4}\)

\(21.3 \pm 1.8 \pm 1.0 {}_{- 3.5}^{+ 1.8}\)

\(12.1 \pm 1.2 \pm 0.6 {}_{- 1.1}^{+ 0.6}\)

\(7.8 \pm 1.1 \pm 0.4 {}_{- 0.5}^{+ 0.3}\)

\(7.6 \pm 1.4 \pm 0.4 {}_{- 0.9}^{+ 0.5}\)

6–7

\(22.2 \pm 2.5 \pm 1.1 {}_{- 5.6}^{+ 3.0}\)

\(19.1 \pm 1.7 \pm 0.9 {}_{- 3.0}^{+ 1.5}\)

\(8.4 \pm 1.0 \pm 0.4 {}_{- 0.6}^{+ 0.3}\)

\(7.1 \pm 1.0 \pm 0.3 {}_{- 0.3}^{+ 0.2}\)

\(3.1 \pm 0.9 \pm 0.2 {}_{- 0.3}^{+ 0.1}\)

7–8

\(20.6 \pm 2.4 \pm 1.0 {}_{- 5.4}^{+ 2.7}\)

\(10.5 \pm 1.2 \pm 0.5 {}_{- 1.6}^{+ 0.8}\)

\(9.2 \pm 1.1 \pm 0.4 {}_{- 0.6}^{+ 0.3}\)

\(5.2 \pm 0.9 \pm 0.3 {}_{- 0.1}^{+ 0.1}\)

\(1.4 \pm 0.6 \pm 0.1 {}_{- 0.1}^{+ 0.1}\)

8–9

\(13.7 \pm 1.9 \pm 0.7 {}_{- 3.3}^{+ 1.7}\)

\(10.7 \pm 1.2 \pm 0.5 {}_{- 1.6}^{+ 0.8}\)

\(6.8 \pm 0.9 \pm 0.3 {}_{- 0.3}^{+ 0.1}\)

\(2.4 \pm 0.6 \pm 0.1 {}_{- 0.1}^{+ 0.0}\)

\(0.6 \pm 0.4 \pm 0.0 {}_{- 0.0}^{+ 0.0}\)

9–10

\(11.3 \pm 1.7 \pm 0.5 {}_{- 2.5}^{+ 1.3}\)

\(6.9 \pm 1.0 \pm 0.3 {}_{- 0.8}^{+ 0.4}\)

\(5.7 \pm 0.8 \pm 0.3 {}_{- 0.3}^{+ 0.2}\)

\(2.5 \pm 0.6 \pm 0.1 {}_{- 0.1}^{+ 0.0}\)

\(3.2 \pm 0.9 \pm 0.2 {}_{- 0.1}^{+ 0.1}\)

10–11

\(8.4 \pm 1.5 \pm 0.4 {}_{- 2.0}^{+ 1.0}\)

\(5.5 \pm 0.9 \pm 0.3 {}_{- 0.6}^{+ 0.3}\)

\(4.3 \pm 0.7 \pm 0.2 {}_{- 0.2}^{+ 0.1}\)

\(2.6 \pm 0.6 \pm 0.1 {}_{- 0.1}^{+ 0.1}\)

11–12

\(8.7 \pm 1.4 \pm 0.4 {}_{- 1.7}^{+ 0.9}\)

\(4.4 \pm 0.7 \pm 0.2 {}_{- 0.3}^{+ 0.2}\)

\(3.2 \pm 0.6 \pm 0.2 {}_{- 0.2}^{+ 0.1}\)

\(1.8 \pm 0.5 \pm 0.1 {}_{- 0.1}^{+ 0.0}\)

12–13

\(4.5 \pm 1.0 \pm 0.2 {}_{- 0.9}^{+ 0.4}\)

\(3.2 \pm 0.6 \pm 0.2 {}_{- 0.3}^{+ 0.1}\)

\(3.5 \pm 0.7 \pm 0.2 {}_{- 0.1}^{+ 0.1}\)

13–14

\(2.4 \pm 0.7 \pm 0.1 {}_{- 0.4}^{+ 0.2}\)

\(0.7 \pm 0.3 \pm 0.0 {}_{- 0.1}^{+ 0.0}\)

\(2.1 \pm 0.5 \pm 0.1 {}_{- 0.1}^{+ 0.0}\)

14–15

\(0.7 \pm 0.4 \pm 0.0 {}_{- 0.1}^{+ 0.1}\)

\(1.5 \pm 0.4 \pm 0.1 {}_{- 0.1}^{+ 0.1}\)

\(0.9 \pm 0.3 \pm 0.0 {}_{- 0.0}^{+ 0.0}\)

Figure 4 compares the LHCb measurement of the differential ϒ(1S)→μ+μ production cross-section with several theory predictions in the LHCb acceptance region. In Fig. 4(a) the data are compared to direct production as calculated from a NNLO* colour-singlet model [29, 30], where the notation NNLO* denotes an evaluation that is not a complete next-to-next leading order computation and that can be affected by logarithmic corrections, which are not easily quantifiable. Direct production as calculated from NLO CSM is also represented. In Fig. 4(b) the data are compared to two model predictions for the ϒ(1S) production: the calculation from NRQCD at NLO, including contributions from χb and higher ϒ states decays, summing the colour-singlet and colour-octet contributions [31], and the calculation from the NLO CEM, including contributions from χb and higher ϒ states decays [14]. Note that the NNLO theoretical model computes the direct ϒ(1S) production, whereas the LHCb measurement includes ϒ(1S) from χb, ϒ(2S) and ϒ(3S) decays. However, taking into account the feed-down contribution, which has been measured to be of the order of 50 % [32], a satisfactory agreement is found with the theoretical predictions. Figure 5 compares the LHCb measurement of the differential ϒ(2S) and ϒ(3S) production cross-sections times branching fraction with the NNLO* theory predictions of direct production. It can be seen that the agreement with the theory is better for the ϒ(3S), which is expected to be less affected by feed-down. At present there is no measurement of the contribution of feed-down to the ϒ(2S) and ϒ(3S) inclusive rate. The cross-sections times the dimuon branching fractions for the three ϒ states are compared in Fig. 6 as a function of rapidity and transverse momentum. The cross-section results are used to evaluate the ratios RiS/1S of the ϒ(2S) to ϒ(1S) and ϒ(3S) to ϒ(1S) cross-sections times the dimuon branching fractions. Most of the systematic uncertainties on the cross-sections cancel in the ratio, except those due to the size of the data sample, the choice of fit function and the unknown polarisation of the different states. The polarisation uncertainty has been evaluated for the scenarios in which one of the two ϒ states is completely polarised (either transversely or longitudinally) and the other is not polarised. The maximum difference of these two cases ranges between 15 % and 26 %. The ratios RiS/1S, i=2,3, are given in Table 5 and shown in Fig. 7. The polarisation uncertainty is not included in these figures. The results agree well with the corresponding ratio measurements from CMS [16] in the pT range common to both experiments.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Fig4_HTML.gif
Fig. 4

Differential ϒ(1S)→μ+μ production cross-section times dimuon branching fraction as a function of pT integrated over y in the range 2.0–4.5, compared with the predictions from (a) the NNLO* CSM [29] for direct production, and (b) the NLO NRQCD [31] and CEM [14]. The error bars on the data correspond to the total uncertainties for each bin, while the bands indicate the uncertainty on the theory prediction

https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Fig5_HTML.gif
Fig. 5

Differential (aϒ(2S)→μ+μ and (bϒ(3S)→μ+μ production cross-sections times dimuon branching fractions as a function of pT integrated over y in the range 2.0–4.5, compared with the predictions from the NNLO CSM for direct production [29]. The error bars on the data correspond to the total uncertainties for each bin, while the bands indicate the uncertainty on the theory prediction

https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Fig6_HTML.gif
Fig. 6

Differential cross-sections of ϒ(1S), ϒ(2S) and ϒ(3S) times dimuon branching fractions as a function of (a) pT integrated over y and (by integrated over pT. The error bars on the data correspond to the total uncertainties for each bin

https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-012-2025-y/MediaObjects/10052_2012_2025_Fig7_HTML.gif
Fig. 7

Ratios of ϒ(2S)→μ+μ and ϒ(3S)→μ+μ with respect to ϒ(1S)→μ+μ as a function of pT of the ϒ in the range 2.0<y<4.5, assuming no polarisation. The error bars on the data correspond to the total uncertainties for each bin except for that due to the unknown polarisation, which ranges between 15 % and 26 % as listed in Table 5

Table 5

Ratios of cross-sections ϒ(2S)→μ+μ and ϒ(3S)→μ+μ with respect to ϒ(1S)→μ+μ as a function of pT in the range 2.0<y<4.5, assuming no polarisation. The first uncertainty is statistical, the second is systematic and the third is due to the unknown polarisation of the three states

pT\((\mathrm{GeV/}c)\)

R2S/1S

R3S/1S

0–1

0.202 ± 0.015 ± 0.006 ± 0.052

0.099 ± 0.010 ± 0.003 ± 0.025

1–2

0.192 ± 0.009 ± 0.005 ± 0.051

0.089 ± 0.006 ± 0.003 ± 0.024

2–3

0.207 ± 0.008 ± 0.006 ± 0.052

0.098 ± 0.005 ± 0.003 ± 0.025

3–4

0.247 ± 0.010 ± 0.007 ± 0.056

0.099 ± 0.006 ± 0.003 ± 0.023

4–5

0.234 ± 0.010 ± 0.007 ± 0.047

0.087 ± 0.005 ± 0.003 ± 0.017

5–6

0.305 ± 0.013 ± 0.009 ± 0.058

0.136 ± 0.007 ± 0.005 ± 0.023

6–7

0.260 ± 0.013 ± 0.007 ± 0.048

0.160 ± 0.009 ± 0.006 ± 0.027

7–8

0.268 ± 0.015 ± 0.008 ± 0.048

0.162 ± 0.011 ± 0.006 ± 0.027

8–9

0.309 ± 0.019 ± 0.009 ± 0.046

0.166 ± 0.013 ± 0.006 ± 0.028

9–10

0.303 ± 0.022 ± 0.009 ± 0.045

0.187 ± 0.016 ± 0.007 ± 0.032

6 Conclusions

The differential cross-sections ϒ(iS)→μ+μ, for i=1,2,3, are measured as a function of the ϒ transverse momentum and rapidity in the region \(p_{\mathrm {T}}<15~\mathrm{GeV/}c\), 2.0<y<4.5 in the LHCb experiment. The analysis is based on a data sample corresponding to an integrated luminosity of 25 pb−1 collected at the Large Hadron Collider at a centre-of-mass energy of \(\sqrt{s} = 7~\mathrm{TeV}\). The results obtained are compatible with previous measurements in pp collisions at the same centre-of-mass energy, performed by ATLAS and CMS in a different region of rapidity [15, 16]. This is the first measurement of ϒ production in the forward region at \(\sqrt{s} = 7~\mathrm{TeV}\). A comparison with theoretical models shows good agreement with the measured ϒ cross-sections. The measurement of the differential cross-sections is not sufficient to discriminate amongst the various models, and studies of other observables such as the ϒ polarisations will be necessary.

Acknowledgements

We thank P. Artoisenet, M. Butenschön, K.-T. Chao, B. Kniehl, J.-P. Lansberg and R. Vogt for providing theoretical predictions of ϒ cross-sections in the LHCb acceptance range. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); CERN; NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS (Romania); MinES of Russia and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.

Copyright information

© CERN for the benefit of the LHCb collaboration 2012