Spin excitations and thermodynamics of the antiferromagnetic Heisenberg model on the layered honeycomb lattice

  • Artem A. Vladimirov
  • Dieter Ihle
  • Nikolay M. Plakida
Open AccessRegular Article

DOI: 10.1140/epjb/e2017-70720-9

Cite this article as:
Vladimirov, A.A., Ihle, D. & Plakida, N.M. Eur. Phys. J. B (2017) 90: 48. doi:10.1140/epjb/e2017-70720-9

Abstract

We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic Heisenberg model on a stacked honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures, the thermodynamic quantities (two-spin correlation functions, internal energy, magnetic susceptibility, staggered magnetization, Néel temperature, correlation length) and the spin-excitation spectrum are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. The Néel temperature is calculated for arbitrary interlayer couplings. Our results are in a good agreement with numerical computations for finite clusters and with available experimental data on the β-Cu2V2O2 compound.

Keywords

Solid State and Materials 
Download to read the full article text

Copyright information

© The Author(s) 2017

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Artem A. Vladimirov
    • 1
  • Dieter Ihle
    • 2
  • Nikolay M. Plakida
    • 1
    • 3
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institut für Theoretische Physik, Universität LeipzigLeipzigGermany
  3. 3.Max-Planck-Institut für Physik Komplexer SystemeDresdenGermany