Forced dichotomic diffusion in a viscous media

  • Hector Calisto
  • Mauro Bologna
  • Kristopher J. Chandía
Regular Article

DOI: 10.1140/epjb/e2016-70643-y

Cite this article as:
Calisto, H., Bologna, M. & Chandía, K.J. Eur. Phys. J. B (2017) 90: 24. doi:10.1140/epjb/e2016-70643-y
  • 19 Downloads

Abstract

In this paper, we study the dynamical properties of a linear system driven by a superposition of a Gaussian white noise and a symmetric Markovian dichotomic noise operating simultaneously on the system. We find exact analytical solutions for the moment generating function and for the probability distribution function. We show analytically that the system presents characteristics belonging to the nonlinear cases, such as a nonequilibrium bimodal distribution. We infer that the white Gaussian noise smooths the two characteristics Diracs delta peaks, generated by a purely dichotomic diffusion, transforming them in two smooth maxima.

Keywords

Statistical and Nonlinear Physics 

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hector Calisto
    • 1
  • Mauro Bologna
    • 2
  • Kristopher J. Chandía
    • 3
  1. 1.Sistema de Bibliotecas, Universidad de TarapacáAricaChile
  2. 2.Instituto de Alta Investigación, Universidad de TarapacáAricaChile
  3. 3.Escuela Universitaria de Ingeniería Eléctrica-Electrónica, Universidad de TarapacáAricaChile

Personalised recommendations