Skip to main content
Log in

Effective one-dimensional models from matrix product states

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we present a method for deriving effective one-dimensional models based on the matrix product state formalism. It exploits translational invariance to work directly in the thermodynamic limit. We show, how a representation of the creation operator of single quasi-particles in both real and momentum space can be extracted from the dispersion calculation. The method is tested for the analytically solvable Ising model in a transverse magnetic field. Properties of the matrix product representation of the creation operator are discussed and validated by calculating the one-particle contribution to the spectral weight. Results are also given for the ground state energy and the dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  2. U. Schollwöck, Ann. Phys. 326, 96 (2011)

    Article  MATH  ADS  Google Scholar 

  3. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  4. Y.Y. Shi, L.M. Duan, G. Vidal, Phys. Rev. A 74, 022320 (2006)

    Article  ADS  Google Scholar 

  5. C. Knetter, G.S. Uhrig, Eur. Phys. J. B 13, 209 (2000)

    Article  ADS  Google Scholar 

  6. C. Knetter, K.P. Schmidt, G.S. Uhrig, J. Phys. A 36, 7889 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. S. Kehrein, The Flow Equation Approach to Many-Particle Systems, Springer Tracts in Modern Physics (Springer, Berlin, 2006), Vol. 217

  8. H.Y. Yang, K.P. Schmidt, Europhys. Lett. 94, 17004 (2011)

    Article  ADS  Google Scholar 

  9. H. Krull, N.A. Drescher, G.S. Uhrig, Phys. Rev. B 86, 125113 (2012)

    Article  ADS  Google Scholar 

  10. M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)

    Article  ADS  Google Scholar 

  11. S. Dusuel, M. Kamfor, K.P. Schmidt, R. Thomale, J. Vidal, Phys. Rev. B 81, 064412 (2010)

    Article  ADS  Google Scholar 

  12. B. Fauseweh, G.S. Uhrig, Phys. Rev. B 87, 184406 (2013)

    Article  ADS  Google Scholar 

  13. T. Fischer, S. Duffe, G.S. Uhrig, New J. Phys. 10, 033048 (2010)

    Article  Google Scholar 

  14. M. Fannes, B. Nachtergaele, R.F. Werner, Commun. Math. Phys. 144, 443 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. J. Haegeman, B. Pirvu, D.J. Weir, J.I. Cirac, T.J. Osborne, H. Verschelde, F. Verstraete, Phys. Rev. B 85, 100408(R) (2012)

    Article  ADS  Google Scholar 

  16. J. Haegeman, S. Michalakis, B. Nachtergaele, T.J. Osborne, N. Schuch, F. Verstraete, Phys. Rev. Lett. 111, 080401 (2013)

    Article  ADS  Google Scholar 

  17. J. Haegeman, T.J. Osborne, F. Verstraete, Phys. Rev. B 88, 075133 (2013)

    Article  ADS  Google Scholar 

  18. L. Vanderstraeten, J. Haegeman, T.J. Osborne, F. Verstraete, Phys. Rev. Lett. 112, 257202 (2014)

    Article  ADS  Google Scholar 

  19. E.H. Lieb, D.W. Robinson, Commun. Math. Phys. 28, 251 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Pfeuty, Ann. Phys. 57, 79 (1970)

    Article  ADS  Google Scholar 

  21. P.G. de Gennes, Solid State Commun. 1, 132 (1963)

    Article  ADS  Google Scholar 

  22. J.B. Parkinson, D.J.J. Farnell, An Introduction to Quantum Spin Systems (Springer, Berlin, 2010)

  23. B.M. McCoy, J.H.H. Perk, R.E. Shrock, Nucl. Phys. B 220, 35 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  24. B.M. McCoy, J.H.H. Perk, R.E. Shrock, Nucl. Phys. B 220, 269 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Müller, R.E. Shrock, Phys. Rev. B 31, 637 (1985)

    Article  ADS  Google Scholar 

  26. J.H.H. Perk, H. Au-Yang, J. Stat. Phys. 135, 599 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. M.B. Hastings, T. Koma, Commun. Math. Phys. 265, 781 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. K. Okunishi, Y. Akutsu, N. Akutsu, T. Yamamoto, Phys. Rev. B 64, 104432 (2001)

    Article  ADS  Google Scholar 

  29. W. Marshall, S.W. Lovesey, Theory of Thermal Neutron Scattering, The International Series of Monographs on Physics (Clarendon Press, Oxford, 1971)

  30. C.J. Hamer, J. Oitmaa, W. Zheng, Phys. Rev. B 74, 174428 (2006)

    Article  ADS  Google Scholar 

  31. H.G. Vaidya, C.A. Tracy, Physica A 92, 1 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  32. R.J. Baxter, J. Math. Phys. 9, 650 (1968)

    Article  ADS  Google Scholar 

  33. M. Fannes, B. Nachtergaele, R.F. Werner, Europhys. Lett. 10, 633 (1989)

    Article  ADS  Google Scholar 

  34. S. Östlund, S. Rommer, Phys. Rev. Lett. 75, 3537 (1995)

    Article  ADS  Google Scholar 

  35. S. Rommer, S. Östlund, Phys. Rev. B 55, 2164 (1997)

    Article  ADS  Google Scholar 

  36. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)

    Article  ADS  Google Scholar 

  37. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. C.K. Majumdar, D.K. Ghosh, J. Math. Phys. 10, 1388 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  39. C.K. Majumdar, D.K. Ghosh, J. Math. Phys. 10, 1399 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  40. C.K. Majumdar, J. Phys. C 3, 911 (1969)

    Article  ADS  Google Scholar 

  41. H. Ueda, I. Maruyama, K. Okunishi, J. Phys. Soc. Jpn 80, 023001 (2011)

    Article  ADS  Google Scholar 

  42. R. Orús, Ann. Phys. 349, 117 (2014)

    Article  ADS  Google Scholar 

  43. G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  44. I.P. McCulloch, arXiv:0804.2509 [cond-mat.str-el] (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Keim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keim, F., Uhrig, G.S. Effective one-dimensional models from matrix product states. Eur. Phys. J. B 88, 154 (2015). https://doi.org/10.1140/epjb/e2015-60188-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60188-0

Keywords

Navigation