Skip to main content

Advertisement

Log in

Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate a recently published analysis framework based on Bayesian inference for the time-resolved characterization of interaction properties of noisy, coupled dynamical systems. It promises wide applicability and a better time resolution than well-established methods. At the example of representative model systems, we show that the analysis framework has the same weaknesses as previous methods, particularly when investigating interacting, structurally different non-linear oscillators. We also inspect the tracking of time-varying interaction properties and propose a further modification of the algorithm, which improves the reliability of obtained results. We exemplarily investigate the suitability of this algorithm to infer strength and direction of interactions between various regions of the human brain during an epileptic seizure. Within the limitations of the applicability of this analysis tool, we show that the modified algorithm indeed allows a better time resolution through Bayesian inference when compared to previous methods based on least square fits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hugenii Huygens, Horologium Oscillatorium (Apud F. Muguet, Paris, 1673)

  2. A.T. Winfree, J. Theor. Biol. 16, 15 (1967)

    Article  Google Scholar 

  3. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 1984)

  4. I.I. Blekhman, Synchronization in Science and Technology (ASME Press, 1988)

  5. K.M. Weickmann, J. Geophys. Res. Oceans 96, 3187 (1991)

    Article  ADS  Google Scholar 

  6. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: A universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

  7. L. Glass, Nature 410, 277 (2001)

    Article  ADS  Google Scholar 

  8. A.K. Engel, P. Fries, W. Singer, Nat. Rev. Neurosci. 2, 704 (2001)

    Article  Google Scholar 

  9. F.J. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, Nat. Rev. Neurosci. 2, 229 (2001)

    Article  Google Scholar 

  10. I.Z. Kiss, Y. Zhai, J.L. Hudson, Science 296, 1676 (2002)

    Article  ADS  Google Scholar 

  11. S.H. Strogatz, Sync: the Emerging Science of Spontaneous Order (Theia, New York, 2003)

  12. A. Schnitzler, J. Gross, Nat. Rev. Neurosci. 6, 285 (2005)

    Article  Google Scholar 

  13. G. Buzsáki, Rhythms of the Brain (Oxford University Press, New York, 2006)

  14. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. G.V. Osipov, J. Kurths, C. Zhou, Synchronization in Oscillatory Networks, Springer Series in Synergetics (Springer, Berlin, 2007)

  17. K. Lehnertz, S. Bialonski, M.-T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, T. Wagner, J. Neurosci. Methods 183, 42 (2009)

    Article  Google Scholar 

  18. J. Fell, N. Axmacher, Nat. Rev. Neurosci. 12, 105 (2011)

    Article  Google Scholar 

  19. M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Rep. 517, 1 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Honerkamp, Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis (Wiley-VCH, New York, 1993)

  21. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2003)

  22. N. Wiener, The theory of prediction, in Modern Mathematics for Engineers, edited by E.F. Beckenbach (McGraw-Hill, New York, 1956)

  23. C.W.J. Granger, Econometrica 37, 424 (1969)

    Article  Google Scholar 

  24. E. Pereda, R. Quian Quiroga, J. Bhattacharya, Prog. Neurobiol. 77, 1 (2005)

    Article  Google Scholar 

  25. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, J. Bhattacharya, Phys. Rep. 441, 1 (2007)

    Article  ADS  Google Scholar 

  26. J. Prusseit, K. Lehnertz, Phys. Rev. E 77, 041914 (2008)

    Article  ADS  Google Scholar 

  27. M.C. Romano, M. Thiel, J. Kurths, C. Grebogi, Phys. Rev. E 76, 036211 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. R.G. Andrzejak, A. Ledberg, G. Deco, New J. Phys. 8, 6 (2006)

    Article  ADS  Google Scholar 

  29. K. Ishiguro, N. Otsu, M. Lungarella, Y. Kuniyoshi, Phys. Rev. E 77, 026216 (2008)

    Article  ADS  Google Scholar 

  30. S. Łeski, D.K. Wójcik, Phys. Rev. E 78, 41918 (2008)

    Article  Google Scholar 

  31. M. Martini, T.A. Kranz, T. Wagner, K. Lehnertz, Phys. Rev. E 83, 011919 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Wagner, J. Fell, K. Lehnertz, New J. Phys. 12, 053031 (2010)

    Article  ADS  Google Scholar 

  33. T. Wagner, N. Axmacher, K. Lehnertz, C.E. Elger, J. Fell, Cortex 46, 256 (2010)

    Article  Google Scholar 

  34. K. Lehnertz, Physiol. Meas. 32, 1715 (2011)

    Article  Google Scholar 

  35. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, Phys. Rev. Lett. 109, 024101 (2012)

    Article  ADS  Google Scholar 

  36. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, C. Schaefer, P.A. Tass, Phase synchronization: from theory to data analysis, in Handbook of Biological Physics, edited by F. Moss, S. Gielen, (Elsevier Science, Amsterdam, 2001), pp. 297–321

  37. J.O. Berger, Statistical Decision Theory and Bayesian Analysis (Springer, Berlin, 1985)

  38. J. Guckenheimer, J. Math. Biol. 1, 259 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. A.T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 1980)

  40. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)

    Article  ADS  Google Scholar 

  41. M.G. Rosenblum, A.S. Pikovsky, Phys. Rev. E 64, 045202 (2001)

    Article  ADS  Google Scholar 

  42. A. Duggento, T. Stankovski, P.V.E. McClintock, A. Stefanovska, Phys. Rev. E 86, 061126 (2012)

    Article  ADS  Google Scholar 

  43. D.A. Smirnov, B.P. Bezruchko, Phys. Rev. E 68, 046209 (2003)

    Article  ADS  Google Scholar 

  44. D.A. Smirnov, R.G. Andrzejak, Phys. Rev. E 61, 036207 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Smirnov, B. Schelter, M. Winterhalder, J. Timmer, Chaos 17, 013111 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  46. V.N. Smelyanskiy, D.G. Luchinsky, A. Stefanovska, P.V.E. McClintock, Phys. Rev. Lett. 94, 098101 (2005)

    Article  ADS  Google Scholar 

  47. D.G. Luchinsky, M.M. Millonas, V.N. Smelyanskiy, A. Pershakova, A. Stefanovska, P.V.E. McClintock, Phys. Rev. E 72, 021905 (2005)

    Article  ADS  Google Scholar 

  48. A. Bandrivskyy, D.G. Luchinsky, P.V.E. McClintock, V.N. Smelyanskiy, A. Stefanovska, Stochastics and Dynamics 05, 321 (2005)

    Article  MathSciNet  Google Scholar 

  49. A. Duggento, D.G. Luchinsky, V.N. Smelyanskiy, I. Khovanov, P.V.E. McClintock, Phys. Rev. E 77, 061106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Duggento, D.G. Luchinsky, V.N. Smelyanskiy, P.V.E. McClintock, J. Stat. Mech. Theor. Exp. 2009, P01025 (2009)

    Article  Google Scholar 

  51. D.G. Luchinsky, V.N. Smelyanskiy, M. Millonas, P.V.E. McClintock, Eur. Phys. J. B 65, 369 (2008)

    Article  ADS  Google Scholar 

  52. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Physica D 144, 358 (2000)

    Article  ADS  MATH  Google Scholar 

  53. O.E. Rössler, Phys. Lett. A 57, 397 (1976)

    Article  ADS  Google Scholar 

  54. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  55. S. Porz, M. Kiel, K. Lehnertz, Chaos 24, 033112 (2014)

    Article  ADS  Google Scholar 

  56. A. Rothkegel, K. Lehnertz, Chaos 22, 013125 (2012)

    Article  ADS  Google Scholar 

  57. B. Boashash, Time frequency signal analysis: methods and applications (Longman Cheshire, Melbourne, 1992)

  58. R. Quian Quiroga, J. Arnhold, P. Grassberger, Phys. Rev. E 61, 5142 (2000)

    Article  ADS  Google Scholar 

  59. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, M. Hallett, Clin. Neurophysiol. 115, 2292 (2004)

    Article  Google Scholar 

  60. H. Osterhage, F. Mormann, T. Wagner, K. Lehnertz, Int. J. Neural. Syst. 17, 139 (2007)

    Article  Google Scholar 

  61. D. Chicharro, R.G. Andrzejak, Phys. Rev. E 80, 026217 (2009)

    Article  ADS  Google Scholar 

  62. P.J. Franaszczuk, G.K. Bergey, P.J. Durka, H.M. Eisenberg, Electroencephalogr. Clin. Neurophysiol. 106, 513 (1998)

    Article  Google Scholar 

  63. S.J. Schiff, D. Colella, G.M. Jacyna, E. Hughes, J.W. Creekmore, A. Marshall, M. Bozek-Kuzmicki, G. Benke, W.D. Gaillard, J. Conry, S.R. Weinstein, Clin. Neurophysiol. 111, 953 (2000)

    Article  Google Scholar 

  64. C.C. Jouny, P.J. Franaszczuk, G.K. Bergey, Clin. Neurophysiol. 114, 426 (2003)

    Article  Google Scholar 

  65. S. Bialonski, K. Lehnertz, Chaos 23, 033139 (2013)

    Article  ADS  Google Scholar 

  66. P.J. Franaszczuk, G.K. Bergey, M.J. Kaminski, Electroencephalogr. Clin. Neurophysiol. 91, 413 (1994)

    Article  Google Scholar 

  67. M. Le Van Quyen, C. Adam, M. Baulac, J. Martinerie, F.J. Varela, Brain Res. 792, 24 (1998)

    Article  Google Scholar 

  68. J. Arnhold, P. Grassberger, K. Lehnertz, C.E. Elger, Physica D 134, 419 (1999)

    Article  ADS  MATH  Google Scholar 

  69. M. Chavez, J. Martinerie, M. Le Van Quyen, J. Neurosci. Methods 124, 113 (2003)

    Article  Google Scholar 

  70. M. Staniek, K. Lehnertz, Biomed. Tech. 54, 323 (2009)

    Article  Google Scholar 

  71. F. Wendling, F. Bartolomei, L. Senhadji, Phil. Trans. Roy. Soc. A 367, 297 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, C. Geier, S. Porz, Physica D 267, 7 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  73. L. Faes, G. Nollo, A. Porta, Phys. Rev. E 83, 051112 (2011)

    Article  ADS  Google Scholar 

  74. J. Runge, J. Heitzig, N. Marwan, J. Kurths, Phys. Rev. E 86, 061121 (2012)

    Article  ADS  Google Scholar 

  75. B. Kralemann, A. Pikovsky, M. Rosenblum, New J. Phys. 16, 085013 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Wilting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilting, J., Lehnertz, K. Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations. Eur. Phys. J. B 88, 193 (2015). https://doi.org/10.1140/epjb/e2015-60011-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60011-0

Keywords

Navigation